Hawaii Ocean Time-series HOT-180 General Cruise Plan

Vessel: R/V Kilo Moana, University of Hawaii

Master of the Vessel: Captain Rick Myer Chief Scientist: Thomas K. Gregory

OTG Marine Technicians: Steve Poulos and Gabe Foreman

Loading: March 30, 2006 @ 0900 HST Departure: March 31, 2006 @ 0900 Arrival: April 4, 2006 @ 0800

1.0 SCIENTIFIC OBJECTIVES

The objective of the cruise is to maintain a collection of hydrographic and biogeochemical data at the Hawaii Ocean Time-series (HOT) stations. Five stations will be occupied during the cruise, in the following order:

- 1) Station 1, referred to as Station Kahe, is located at 21° 20.6'N, 158° 16.4'W and will be occupied on the first day of the cruise for about 2 hours.
- 2) Station 2, referred to as Station ALOHA is defined as a circle with a 6 nautical mile radius centered at 22° 45'N, 158°W. This is the main HOT station and will be occupied during the 2nd, 3rd, and 4th days of the cruise.
- 3) Station 51, is the site of the MOSEAN Mooring, located at 22° 45'N, 158° 6'W will be occupied on the 4th day of the cruise for about 30 minutes.
- 4) Station 50 is the site of the WHOTS Mooring, is located at 22° 46.1'N, 157° 53.4'W and will be occupied on the 4th day of the cruise for about 30 hours.
- 5) Station 6, referred to as Station Kaena, is located off Kaena Point at 21° 50.8'N, 158° 21.8'W will be occupied on the 4th day of the cruise for about 2 hours.

SCIENTIFIC OPERATIONS 1.1

<u>Station</u>	Activities
Kahe (sta. 1)	Weight Cast, PRR cast, CTD cast (1000 m)
ALOHA (sta. 2)	Sediment traps, net tows, CTD operations, primary productivity measurements, AC9/FRRf, misc. experiments
MOSEAN mooring station (sta. 51)	CTD cast (200 m)
WHOTS mooring station	CTD cast (200 m)
(sta. 50)	
Kaena (sta. 6)	CTD cast (2400 m)
Underway/continuous	ADCP, thermosalinograph, fluorometry, meteorology

2.0. SCIENCE PERSONNEL

Participant Affiliation/HOT Group Title

Mahaffey, Claire	UH/BEACH	Research Specialist	
Sadler, Dan	UH/BEACH	Research Associate	
Bjorkman, Karin	UH/BEACH	Research Specialist	
Curless, Susan	UH/BEACH	Research Associate	
Defelice, Suzanne	UH/PO	Research Associate	
Doggett, Ken	UH/BEACH	Research Associate	
Foreman, Gabe	UH/OTG	Marine Technician	
Menviel, Laurie	UH/PO	Graduate Student	
Church, Matt	UH/BEACH	Research Oceanographer	
Gregory, Thomas	UH/BEACH	Chief Scientist	
Harlan, Adriana	UH/BEACH	Research Associate	
Lethaby, Paul	UH/PO	Research Associate	
Smith, Justin	UH/PO	Volunteer	
Poulos, Steve	UH/OTG	Marine Technician	
Martiny, Jennifer	Brown/BEACH	Assistant Professor	
Lennon, Jay	Brown/BEACH	Postdoctoral Researcher	
Santiago - Mandujano, Fernando	UH/PO	Research Associate	
Taylor, Mana	UH/BEACH	Graduate Student	
Fujieki, Lance	UH/BEACH	Research Associate	
Watkins, Blake	UH/BEACH	Marine Engineer	

3.0. SUMMARY SCHEDULE

.24 March	Pre-cruise meeting
30 March	Ship loading starting at 0900 hrs
31 March	Depart from Snug harbor at 0900 hrs. Science personnel on-board
	by 0830.
31 March.	Station 1 Kahe Pt. operations
1-3 April	Station ALOHA operations. Station 50 and 51 CTD casts. Station
_	Kaena CTD cast
4 April	Arrive back to Snug harbor. ETA 1000 hrs, full offload

4.0. OPERATIONAL PLANS

4.1. Station Kahe (21°20.6'N, 158°16.4'W)

A 400 lb. weight-test cast, one CTD cast to 1000 m, and a PRR cast (Sect. 4.2.7) will be conducted at this location in the afternoon of March 31 The CTD winch and crane will be

required for these operations. After the operations are satisfactorily completed, the ship shall proceed to Station ALOHA.

- 4.2. Station ALOHA (22°45'N, 158°W with 6 nm radius)
- 4.2.1. Upon arrival to Station ALOHA, A series of CTD casts will commence.

4.2.2. Sediment trap deployment

At midnight on March 31, the floating sediment traps will be deployed at a location within Station ALOHA which will be determined by local current conditions to be determined enroute to ALOHA. The array will be deployed from the stern using the A-frame and our Seamac winch. Power requirement for the winch is 440 VAC, three phase at 10 amps. After deployment we request that the Bridge verify that the radio transmitters are functioning and directionally correct.

The array will drift for about 52 hours before recovery. The array is equipped with 2 ARGOS satellite transmitters (platform #s 01325 and 01833), 2 strobe lights, and 2 radio transmitters (channel 74, 156.725 MHz). Daily positions of the array shall be transmitted by email directly to the ship; therefore the ship will not need to keep within site of the array until the time of the recovery. Assistance from the bridge is requested in plotting the drift track of the array. We request the use of the ship's radio direction finder for locating the array before recovery.

After deployment of the sediment trap array, the ship shall return to the center of Station ALOHA to deploy the gas array.

4.2.3 Gas Array

Samples for the gas array will be collected from casts 1 and 2. We request the use of the A-frame for this operation and will also use the Seamac winch. The array is equipped with a strobe light and a radio transmitter (frequency to be provided).

4.2.4. Water column measurements

Vertical profiles of temperature, conductivity and dissolved oxygen will be made with an instrument package consisting of a Sea-Bird CTD attached to a 24-place rosette with 12 liter sampling bottles. We need the ship's CTD winch and crane for this operation. Water samples for biogeochemical measurements will also be collected on each cast. A series of 1000-m casts shall be made continuously every 3 hours for a 36-hour period, ending with a second near-bottom cast. It is highly desired that this burst sampling be done without interruption and we request the ship to maintain position within the study area for that period of time, and repositioning to the center of the Station before each cast whenever possible.

4.2.5. Primary production experiment

Samples for the primary productivity experiment will be collected from the rosette. Just before dawn (sunrise 0623 on April 2), a third free drifting incubation array will be deployed from the stern. We request the use of the A-frame for this operation and will also use the Seamac winch. The array is equipped with strobe lights and a radio transmitter (channel 72, 156.625 MHz). The ship shall keep within site of the array while performing CTD operations

for the approximately 12-hour duration the array will be in the water. The array will be recovered just at sunset (1848). CTD operations shall continue after recovery. All radioactive waste generated by the experiment shall be returned to the University of Hawaii. Only qualified personnel shall handle radioactive material.

4.2.6. Plankton net tows

Plankton nets will be deployed from the stern and shall be towed for half-hour periods. Half-hour periods are scheduled at around noon and midnight throughout the cruise. The Aframe and trawl winch will be needed for this operation.

4.2.7. Profiling Reflectance Radiometer (PRR).

Around noon on each day a profiling reflectance radiometer will be deployed from the main deck using the main crane. The instrument is hand-lowered and retrieved with assistance from the Seamac winch.

4.2.8. AC9/FRRf

The Wet Labs AC9 is an optical instrument that measures water column spectral absorption and attenuation at nine wavelengths. The AC9 package also includes a Fast Repetition Rate Fluorometer (FRRf), and a Sea-Bird Seacat with temperature, conductivity, fluorometer, and pressure sensors. The package will be deployed to a target depth of 250 m at a constant speed of 10 m/min during the downcast and upcast. We request the use of the small capstan and A-frame for this operation.

4.3 Floating sediment trap recovery

On April 3, after the morning AC9/FRRf cast has been completed, we shall transit for the recovery of the sediment trap array. The main crane and the Seamac winch will be needed to retrieve the sediment trap array. After the array is recovered, the ship shall transit to Station 51 to conduct one 200 m CTD cast.

4.4 Mooring Operations

4.4.1 WHOTS Mooring (Station 50)

One 200 m cast will be conducted at this mooring as described above for MOSEAN mooring.

4.5 Station Kaena (21° 50.8'N, 158° 21.8'W)

A near-bottom CTD cast (~2500 m) will be conducted at this location in the evening of Feb. 16, after which the ship shall return to Snug harbor.

4.6 Acoustic Doppler Current Profiler

The ship's acoustic Doppler current profiler (ADCP) will be in operation during the duration of the cruise. The OTG electronics technician will be in charge of the ADCP system.

4.7 Thermosalinograph and Fluorometer

The ship's thermosalinograph and fluorometer sampling the uncontaminated seawater supply system will be in operation during the duration of the cruise while the ship is outside of

Snug harbor. Salinity samples to calibrate the thermosalinograph will be taken from the intake hose at 4-hour intervals throughout the duration of the cruise by the science personnel. The OTG electronics technician will be in charge of the thermosalinograph operation.

5.0 EQUIPMENT

- 5.1 The HOT science party shall be bringing the following
- 1. Seabird CTD system, all sensors except pinger and altimeter, deck boxes and computer CTD acquisition systems.
- 3. One laboratory vans with assorted equipment for radioisotope and general use
- 4. Distilled, deionized water and all required chemicals and isotopes
- 5. Storage van with assorted equipment
- 6. Large vacuum waste container
- 7. Liquid nitrogen dewars
- 8. Drifting sediment trap array with strobe lights, satellite and radio transmitters, floats, weights
- 9. Kevlar line, polypropylene line
- 10. Sediment traps and crosses
- 11. Drifting primary production array with light and radio transmitter, floats, weights, polypro. Line, spare buoy, etc.
- 12. PRR, AC-9 and other optical measuring instruments.
- 13. SEA-MAC winch (440 VAC, 3 phase at 10 amps) and Kevlar line
- 14. Oxygen titration system
- 15. Plankton nets and towing lines
- 16. Desktop and laptop personal computers
- 17. Assorted tools
- 18. All required sampling bottles.
- 19. Deck incubation system
- 20. 400 lb weight.
- 21. Acoustic transponders for mooring release
- 22. Pertinent MSDS
- 23. Small capstan for optics and net tows
- 5.2. We will need the use of the following ship's equipment:
- 1. A-frame and trawl winch
- 2. A-frame block assembly
- 3. Appleton crane and winch with conducting wire for CTD
- 4. Electric power for winches (440 VAC three phase at 10 amps) and vans (208 VAC single phase at 30 amps for labvan, 110 VAC 10 amps for equipment van)
- 5. Radio direction finder
- 6. Empty freezer and refrigerator in wet lab
- 7. Space on the main deck for one storage van, SEA-MAC winch
- 8. Space on the 02 deck for one lab vans
- 9. Hand-held VHF transceivers
- 10. Precision depth recorder

- 11. Shackles, sheaves, hooks and lines
- 12. Shipboard Acoustic Doppler Current Profiler
- 13. Thermosalinograph and Fluorometer
- 14. Copy machine
- 15. Grappling hooks and line
- 16. Navlink2 PC or equivalent
- 17. Running fresh water and seawater, hoses
- 18. Electronic mail system
- 19. GPS system
- 20. Uncontaminated seawater supply
- 21. Capstan
- 22. Underway/on-station data acquisition system for meteorological instruments, ADCP, thermosalinograph, fluorometer
- 23. 24-place rosette with 10-l sampling bottles. SeaPoint Fluorometer, Pinger and Altimeter, spare carousel, spare oxygen sensor.

Ship:	R/V KILO MOANA	HOT 180 CTD CASTS	31 March – 4 April,	2006
	Cast	Samples	#	Bottles
Kahe	<u>Pt.</u>			
s1c1	1000 m	O ₂ , Temp, DIC/Alk, Nuts, Chl	a, LLN, LLPO _{4,}	24
<u>Statio</u>	n ALOHA	DOC, FCM, Salts		
s2c1	200 m	Gas Array (7@5, 25, 45), Salts,		21
s2c2	200 m	Gas Array (7@75, 100, 125), Salt	s,	21
s2c3	4740 m (PO-1)	O ₂ , Temp, DOC, DIC/Alk, Nuts, S	Salts	24
s2c4	1000 m (PO-2)	O ₂ , Temp, Nuts, DIC/Alk, Quay, I	OOC, Salts	24
s2c5	1000 m	ATP, Salts, MC (175,150,125,100))	16
s2c6	1000 m	PE, Salts, MC(5,25,45,75,100,125	5,150,175)	17
s2c7	1000 m	HPLC, Chl a, Slides, Salts, MC (F	PB 5,25,45,75)	22
s2c8	1000 m(BEACH)	O ₂ , Temp, DIC/Alk, Nuts, LLN, L DOC, Keeling, Quay, Salts	LLP,	20
s2c9	1000 m	Primary Production, Salts		22
s2c10	1000 m	Open		3
s2c11	1000 m	MC(5,25,45,75,100,125,150,175)		10
s2c12	1000 m	MIT		14
s2c13	1000 m	PC/PN, Salts, CM (8@30)		22
s2c14	1000 m	PPO4, Salts,		14
s2c15	1000 m	Open		3
s2c16	4740 m (PO-3)	Oxygen, Salts, MC(1@1000,2000	,3000,4000), PUR)	24
s2c17	200 m	PSi, ZJ		24
MOSI	EAN Mooring			

s2c14 1000 m PPO4, Salts, 14 s2c15 1000 m Open 3 s2c16 4740 m (PO-3) Oxygen, Salts, MC(1@1000,2000,3000,4000), PUR) 24 s2c17 200 m PSi, ZJ 24 MOSEAN Mooring s51c1 200 m Salts 3 WHOTS Mooring S00c1 Salts 3 Kaena Point s6c1 2500 m Open, Chl a, Salts 13

SHIP R/V KILO MOANA HOT 180 DATE 31 March – 4 April, 2006

	TO VIRILO IVI		100 DITTE 51		
TIME	Fri. 3/31	Sat. 4/1	Sun. 4/2	Mon. 4/3	Tues. 4/4
0000		S2C1 Gas 1			
0100			Net Tow		
		S2C2 Gas 2			
0200			S2C9 PP		
				Net Tow	
0300				AC9/FRRF	
0400				Transit sed traps	
			S2C10 Open	1	
0500		Deploy gas array	1		
			Deploy PP array	Recover traps	
0600		S2C3 PO-1	Transit gas array	_	
				Transit St. 51	
0700			Recover gas array		
0800			S2C11 Open	S51C1 MOSEAN	Arrive Snug
					offload
0900	Depart Snug			Transit ALOHA	
1000		Net Tow	Net Tow		
1100		S2C4 PO-2	S2C12 MIT	S2C17 PSi/ZJ	
		(Begin 36 hr)			
1200	Arrive Kahe		PRR	PRR	
	Weight cast		AC9/FRRF	AC9/FRRF	
1300	PRR	Net Tow			
	S1C1		Net Tow	AC9/FRRF	
1400		S2C5 ATP	S2C13 PC/PN		
	Transit ALOHA			Transit St. 50	
1500					
				S50C1	
1600					
1700		S2C6 PE	S2C14 PPO4	Transit St. Kaena	
1700		5200 FE	32017 1107	Transit St. Kaciia	
1800			Recover PP array		
1000			1.000 voi 11 unuy		
1900					
2000		S2C7 HPLC	S2C15 Open		
			1		
2100				S6C1	
2200		Net Tow	Net Tow		
2300	Arrive ALOHA	S2C8 BEACH	S2C16 PO-3	Transit Snug	
	Deploy sed traps		(end 36 hours)		

April 2: Sunrise 0623 Sunset 1848

6.0 HOT-178 Watch Schedule/ Bunk assignment

0300-1500

Susan Curless - Watch Leader Tom Gregory – Chief Scientist Lance Fujieki Adriana Harlan Fernando S-Mandujano Laurie Menviel

1500-0300

Paul Lethaby - Watch Leader Karin Bjorkman Suzanne Defelice Ken Doggett Dan Sadler

At Large

Claire Mahaffey Blake Watkins Mana Taylor Jennifer Martiny Jay Lennon Matt Church Justin Smith

OTG

Steve Poulos Gabe Foreman