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Planktonic marine microbes live in dynamic habitats that demand
rapid sensing and response to periodic as well as stochastic environ-
mental change. The kinetics, regularity, and specificity of microbial
responses in situ, however, are not well-described. We report here
simultaneous multitaxon genome-wide transcriptome profiling in
a naturally occurring picoplankton community. An in situ robotic
sampler using a Lagrangian sampling strategy enabled continuous
tracking and repeated sampling of coherent microbial populations
over 2 d. Subsequent RNA sequencing analyses yielded genome-wide
transcriptome profiles of eukaryotic (Ostreococcus) and bacterial
(Synechococcus) photosynthetic picoplankton as well as proteorho-
dopsin-containing heterotrophs, including Pelagibacter, SAR86-clus-
ter Gammaproteobacteria, and marine Euryarchaea. The photo-
synthetic picoplanktonexhibited strong diel rhythmsover thousands
of gene transcripts that were remarkably consistent with diel cycling
observed in laboratory pure cultures. In contrast, the heterotrophs
did not cycle diurnally. Instead, heterotrophic picoplankton popula-
tions exhibited cross-species synchronous, tightly regulated, tempo-
rally variable patterns of gene expression for many genes,
particularly those genes associated with growth and nutrient acquisi-
tion. This multitaxon, population-wide gene regulation seemed to re-
flect sporadic, short-term, reversible responses to high-frequency
environmental variability. Although the timing of the environmental
responses among different heterotrophic species seemed synchro-
nous, the specific metabolic genes that were expressed varied from
taxon to taxon. In aggregate, these results provide insights into the
kinetics, diversity, and functional patterns of microbial community
response to environmental change. Our results also suggest a means
by which complex multispecies metabolic processes could be coordi-
nated, facilitating the regulation of matter and energy processing in
a dynamically changing environment.

autonomous sampling | environmental microbiology |
metatranscriptomics | microbial oceanography | community ecology

Planktonic microbial communities are characterized by high
productivity and rapid turnover. As a result, they respond

rapidly to environmental fluctuations, and minor perturbations
have the potential to trigger large and rapid shifts in ecosystem
properties and function (1). Characterizing the dynamics of natural
microbial communities on relevant temporal and spatial scales
however, remains challenging. Consequently, few data are available
on the timing, magnitude, and specific biological details of response
and regulation among diverse microbial taxa experiencing envi-
ronmental fluctuations on short time scales in situ.
Acquiring accurate and detailed assessments of microbial dy-

namics in natural ecosystems poses several challenges. One chal-
lenge is the paucity of methods available for estimating the disparate
activities and environmental responses of diverse microbes inhabit-
ing complex communities. A recent approach that addresses this
challenge involves the use of community RNA sequencing (e.g.,
metatranscriptomics) to facilitate simultaneous transcriptional pro-
filing of co-occurring taxawithin amicrobial assemblage (2–5). Initial
studies using this approach focused on changes in overall community
metabolic profiles. Recent advances in sequencing technologies,

combined with the growing number of environmentally relevant
reference genomes, now enable elucidation of genome-wide tran-
scription profiles of abundant microbial groups represented in
metatranscriptomic datasets (6–8). In situ sampling of discrete, co-
herent microbial populations over time represents another formi-
dable challenge. This problem is especially apparent in aquatic
environments, where, because of hydrodynamic processes, sam-
ples collected at a fixed location tend to convolute temporal
variability with spatial heterogeneity (6, 9). To overcome these
challenges and better assess microbial community environmental
responses and dynamics in situ, we combined an automated La-
grangian sampling approach with microbial community tran-
scriptome analyses to generate a high-resolution 2-d time series
of transcriptional activity among sympatric marine picoplankton
populations.

Results and Discussion
Marine surface water microbes were collected and preserved by
a robotic system (10) suspended beneath a free-drifting buoy
deployed off the coast of northern California (Fig. 1). Over a 2-d
sampling period, the instrument drifted 50.3 km along the warm
side of a front that was generated by coastal upwelling to the east
(Fig. 1). Samples for community RNA sequencing were collected
and preserved every 4 h. Portions of the sampling track were
marked by strong vertical gradients in salinity and temperature
(Fig. 1 C and D). However, current velocity data suggest that the
water sampled for microbial transcriptomic analysis was relatively
stable horizontally (SI Appendix, Fig. S1 and Table S1). The
taxonomic representation in the metatranscriptome sampled over
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this time also remained relatively constant (Fig. 1). Of the over
2.4 million sequences that were assigned to 8,117 unique National
Center for Biotechnology Information (NCBI) Taxonomy IDs,
∼98% matched taxa that were detected in all 13 samples. Addi-
tionally, our samples showed greater overall similarity in taxo-
nomic composition to one another across all of the time points
than did samples collected over a 24-h period at a fixed spatial
location in Monterey Bay (6) (SI Appendix, Fig. S2).
Our analyses focused on transcriptional dynamics among five

abundant microbial populations in the sampled community, in-
cluding Ostreococcus, Synechococcus, Pelagibacter, SAR86 cluster
Gammaproteobacteria (SAR86), and marine group II Euryarchaea
(MGII) (Table 1). These populations represent widely distributed
and ecologically important clades of marine picoplankton (11–15).
Transcripts mapping to each of these groups were identified and
annotated using a newly developed computational workflow (SI
Appendix, Fig. S3) that assigned sequences to specific taxon bins
based on best-scoringmatcheswithin the fullNCBI database.Within
each taxon bin, transcript counts for genes shared between multiple
reference genomes of the same taxa were combined, and analyses of
transcriptional dynamics focused on changes in relative transcript

abundance within each specific taxonomic population, independent
of fluctuations in its abundance relative to the total community
transcriptome. (Table 1 and SI Appendix, Figs. S3–S11 andTables S2
and S3 have details of transcript mapping and annotation.)
To confirm that complex transcriptional dynamics could be ob-

served within transcriptional profiles extracted from community-
wide gene expression datasets, we used cluster analysis to assess
global transcriptional patterns among the five most highly repre-
sented taxonomic groups (Fig. 2 and SI Appendix, Figs. S12–S17).
Within each taxon, we identified groups of genes that shared similar
transcriptional profiles using the geneARMA software package
(16), which uses an autoregressive moving average model, ARMA
(p,q), for the longitudinal covariance structure and Fourier series
functions to model gene expression patterns. As anticipated, a large
number of coexpressed genes with apparent 24-h periodicity were
identified among Ostreococcus and Synechococcus populations.
Additionally, principal components analysis clearly separated the
transcriptome profiles of these taxa based on time of day (Fig. 2B).
Pure cultures of bothOstreococcus and Synechococcus are known to
have fully functional circadian clocks that coordinate large-scale
transcriptional dynamics (17, 18), and those rhythms were readily

Fig. 1. Sampling locations and sample characteristics. (A) The ESP drift track imposed over a map showing average sea surface temperature [Polar orbiting
environment satellites, advanced very high resolution radiometer, local area coverage. Western United States, day/night, 5 × 5-pixel (5 × 5-km) median-
filtered composite from September 21, 2010; cloud cover precluded satellite observation during the sampling period]. Inset shows the sampling location
relative to western North America. (B) Transcript abundances of major taxa represented as percent of sequences with matches in the NCBInr peptide da-
tabase. (C) Environmental conditions in the immediate vicinity of the ESP (measurements taken by ESP-mounted instruments). Grey bars represent sample
collection times. (D) Integrated depth profile showing salinity gradients surrounding the sampling location (dotted line). Measurements were taken near the
ESP by a ship-deployed instrument. The arrow in A indicates the direction of the drift.
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apparent in the transcriptome profiles of wild populations as well as
the behavior of individual transcripts (see below). In contrast,
cluster analysis of transcription among the three proteorhodopsin-
expressing heterotrophic populations did not exhibit evidence of
significant diel regulation of gene expression (Fig. 2C). Neverthe-
less, transcripts recovered from these populations, particularly
transcripts from Pelagibacter, did reveal variable and coordinated
regulatory patterns among a large variety of different gene suites
and metabolic pathways (Fig. 2 and SI Appendix, Figs. S15–S17).

Diel Rhythms in Gene Expression Among Ostreococcus and Syne-
chococcus. To further explore diel transcriptional rhythms, we
used harmonic regression-based analyses to identify individual
transcripts that followed a sinusoidal curve with 24-h periodicity
(Fig. 3). Using this approach, 2,097 of 7,491 Ostreococcus tran-
scripts and 130 of 3,950 Synechococcus transcripts were identified
as significantly periodic. None of the transcripts from the three
heterotrophic populations were identified as significantly periodic
using this method.
Ostreococcus population transcripts showing strong periodic

trends in transcript abundance included the master clock genes
Circadian Clock Associated 1 and Timing of Cab expression 1 and
genes associated withmajormetabolic functions (Fig. 3). Ribosomal
protein gene expression peaked in the early morning followed by an
increase in gene transcripts associated in carbon fixation, a sub-
sequent maximum in photosynthesis gene expression around mid-
day, and finally, cell cycle and DNA replication gene expression,
which reached a maximum at the end of the day. Although only one
mitochondrial gene (NADH dehydrogenase I subunit 6) was iden-
tified as significantly periodic, 49 of 61 total plastid genes exhibited
24-h periodicity, with a predawn peak of biosynthetic genes (ribo-
somal proteins and RNA polymerase) and a midafternoon peak of
photosynthesis genes. Interestingly, whereas most genes involved in
carbon fixation were identified as significantly periodic with peak
expression around 8:00AM, the large subunit of RuBisCO (the only
carbon fixation gene still encoded by the Ostreococcus plastid ge-
nome) did not show cyclical trends in transcript abundance.
Among Synechococcus population transcripts, two of three

kaiABC clock genes as well as genes involved in oxidative phos-
phorylation, photosynthesis, respiration, and carbon fixation (Fig.
3) exhibited periodic trends in transcript abundance. The third
clock gene, kaiB, was not identified as significantly periodic, but its
relatively low coverage level (zero to five copies per library) may
have precluded accurate quantification. ATP synthase, carboxy-

some, andCalvin cycle transcripts largely exhibited amorning peak
in expression, whereas cytochrome oxidase transcripts peaked in
the evening. In contrast to observed patterns amongOstreococcus,
only one photosystem gene (Cluster 8842 psaK) and relatively few
antenna proteins (4 of 25) were identified as significantly periodic
in our dataset. Genes in these categories did, however, show high-
amplitude and highly variable expression, suggesting that they may
be differentially regulated based on environmental factors. Also
unlike Ostreococcus, evidence for diel periodicity in growth and
division among this Synechococcus population was relatively weak,
with no cell cycle or DNA replication transcripts showing signifi-
cantly periodic expression. However, given the complicated re-
lationship between nutrient status and the timing of DNA
replication and cell division in Synechococcus (19, 20), the un-
known growth state of this population, and the apparent presence
in our dataset of two ecologically distinct Synechococcus clades (SI
Appendix, Fig. S8), a lack of a clear periodic signal in population-
averaged transcript abundance for individual cell cycle and DNA
replication genes is perhaps not surprising.
Both the Ostreococcus and Synechococcus data reflected broad

trends previously observed in laboratory monocultures. The di-
urnal timing of expression of transcripts in wild Ostreococcus
populations in particular was remarkably consistent with gene
expression patterns observed in microarray-based laboratory
studies of O. tauri cultures grown in 12:12-h light:dark cycles (18)
(Fig. 4). However, there were also a number of differences be-
tween results obtained for our natural populations and those
results observed in laboratory analyses of pure cultures.
A direct comparison of our field study with any previously

published laboratory studies of Synechococcus was problematic,
because most existing datasets (17) focus on S. elongatus, a fresh-
water species, and were performed under constant light illumi-
nation. It is worth noting, however, that our study identified
fewer Synechococcus transcripts that exhibited periodic trends
in expression compared with laboratory studies of the freshwa-
ter Synechococcus species. However, the orthologs identified in
our field populations do not simply represent a high-amplitude
subset of the periodically expressed transcripts detected in labo-
ratory studies. Of 69 periodically expressed Synechococcus or-
thologs in our field study that could be mapped to probes in the
laboratory-based microarray study, 24 orthologs were not iden-
tified as significantly periodic under laboratory conditions.
ForOstreococcus, the populations reported here and a previous

laboratory study (18) identified ∼2,000 periodically expressed

Table 1. Assignment of sequences to taxon bins

Sample CDS

Ostreococcus Synechococcus Pelagibacter SAR86 cluster MGII Archaea

Reads Orthologs Reads Orthologs Reads Orthologs Reads Orthologs Reads Orthologs

9/16 2:00 PM 234,860 35,590 4,661 18,777 2,535 14,262 1,278 10,053 1,499 12,600 1,195
9/16 6:00 PM 208,667 21,292 4,148 15,286 2,437 11,275 1,199 7,207 1,383 10,185 1,097
9/16 10:00 PM 198,687 32,218 5,112 16,412 2,282 12,850 1,235 6,665 1,173 11,635 1,229
9/17 2:00 AM 269,745 31,412 4,908 6,551 1,749 12,508 1,253 7,990 1,438 12,072 1,160
9/17 6:00 AM 209,305 29,903 4,402 6,908 1,618 11,339 1,238 8,003 1,441 10,574 1,233
9/17 10:00 AM 384,870 54,840 4,271 5,579 1,279 22,572 1,377 8,698 1,341 24,340 1,384
9/17 2:00 PM 209,634 22,695 4,037 8,714 1,955 13,707 1,304 9,057 1,490 9,309 1,127
9/17 6:00 PM 183,482 14,357 3,443 5,046 1,406 12,056 1,192 6,804 1,268 8,512 1,105
9/17 10:00 PM 176,778 15,692 4,231 9,261 2,070 9,161 1,180 7,678 1,480 7,643 1,142
9/18 2:00 AM 220,569 23,025 4,501 13,138 2,035 13,859 1,284 9,456 1,527 6,922 1,067
9/18 6:00 AM 222,828 21,064 3,239 6,384 1,306 15,609 1,217 8,717 1,309 11,038 1,240
9/18 10:00 AM 208,782 23,215 3,641 9,730 1,818 11,393 1,195 9,010 1,521 6,954 1,040
9/18 2:00 PM 232,718 27,704 3,699 14,811 2,216 14,639 1,098 8,973 1,451 5,692 925
Total 2,960,925 353,007 7,491 136,597 3,950 175,230 1,810 108,311 2,226 137,476 1,691

The total number of putative coding sequences (unique nonrRNA sequence reads with at least one hit in the NCBInr database with bit score >50) identified
in each sample is listed. For each taxon bin, the number of sequence reads assigned to that group and the number of ortholog clusters with at least one
assigned sequence within each sample are listed. CDS, coding sequence.
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Ostreococcus transcripts. However, of 1,683 significantly periodic
orthologs in our field populations that could be mapped to probes
in the O. tauri microarray, 881 orthologs were not identified as
significantly periodic in the laboratory study. Reprocessing the
laboratory microarray data using our regression-based approach
(with a Gaussian error model) increased the overlap in signifi-
cantly periodic genes, but this analysis still yielded 393 genes
identified as periodic in our field data but not in the laboratory
study. We did not identify any obvious biological trends among
Ostreococcus transcripts that were identified as periodically
expressed in the field but not the laboratory. Although some of
these differences in gene expression patterns may be the result of
methodological differences, many are likely to represent re-
sponses to cues present in the natural environment but not within
the relatively static laboratory environment.
In sum, these analyses validate our approach and confirm that

complex transcriptional patterns within distinct populations can be
resolved within bulk community RNA profiles. Although previous

studies have suggested single-time point day/night differences in
the overall transcriptional profiles of marine microbial commu-
nities, our analyses here provide a much higher-resolution picture
of genome-wide diel transcriptional dynamics among different
microbial populations in a natural microbial community in situ.

Transcriptional Dynamics Within Pelagibacter Population Transcripts.
The naturally occurring Pelagibacter populations that we sampled
did not exhibit strong circadian rhythms of gene expression. We
did however observe evidence for well-orchestrated, genome-
wide transcriptional regulation within this group. Hierarchical
clustering of samples and pathways showed a large degree of
covariance between some major metabolic pathways (Fig. 5A). In
particular, the pathway-level signal for ribosomal proteins and
oxidative phosphorylation showed strong positive correlation with
one another (correlation coefficient = 0.98, P value = 1 × 10−8)
and were negatively correlated with many transport gene tran-
scripts, including the ATP binding cassette (ABC) transporter

Fig. 2. Global transcriptional profiles from phototrophic and heterotrophic taxon bins. Heat maps depict third-order Fourier series models from geneARMA
clustered transcripts within phototrophic (A) and heterotrophic (C) taxa. Heat maps show model amplitude at the 13 time points (columns) for each of the
geneARMA clusters (rows). GeneARMA cluster models were normalized to an amplitude of one. Membership information and individual gene transcript
traces are shown in SI Appendix, Figs. S13–S17. (B) Principal components analysis of Ostreococcus and Synechococcus transcriptomes. Axes represent the first
and second principal components and are labeled with the percent of total variance explained.
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family (correlation coefficient = −0.88, P value = 1 × 10−5 for
ribosomal proteins vs. ABC). Principal components analysis sug-
gested that these metabolic signals explain more of the variability
observed in wild Pelagibacter transcript profiles than any of the
measured environmental parameters (Fig. 5B). Furthermore,
a Poisson regression-based analysis found that 101 of 1,810 ob-
served Pelagibacter transcripts were significantly correlated with
pathway-level signals for either ribosome biosynthesis or ABC
transport (SI Appendix, Tables S4 and S5). A total of 74 of these
transcripts was identified as up-regulated in tandem with the
ribosome synthesis pathway (and down-regulated with transport
up-regulation), including not only transcripts coding for ribo-
somal proteins but also genes associated with C1 metabolism
(21), secretion, ATP synthase (six of nine subunits), and proton-
translocating pyrophosphatase. The 27 transcripts that followed
the opposite trend (up-regulated with transporters and down-
regulated with ribosome synthesis) seemed to represent a gen-
eralized transport signal, encompassing not only ABC trans-
porters of amino acids, polyamines, and phosphonates but also
TRAP (Tripartite ATP-independent Periplasmic) transporters
of carboxylic acids, an ammonium transporter, and an Na+/solute
symporter.

In many microbial species, the abundance of ribosomal pro-
teins and their transcripts is tightly regulated with respect to
cellular growth rate (22–24), and the relative abundance of ri-
bosomal protein transcripts for a given taxon has been proposed
as a metric for assessing in situ growth rates (8). The trends in
Pelagibacter gene expression that we report here however, sug-
gest a very dynamic and rapidly fluctuating reallocation of cel-
lular resources between growth and nutrient acquisition. In this
context, cell populations exhibiting decreased ribosomal protein
synthesis and increased transporter activity are most likely indi-
cators of sporadically limiting substrate availability in the ambient
environment. The broad range of transporters that were expressed
when ribosomal synthesis was down-regulated does not suggest
limitation by any single nutrient. Additionally, neither set of genes
seems to reflect stationary-phase responses previously reported in
laboratory cultures of Candidatus P. ubique (25) (SI Appendix,
Tables S4 and S5), suggesting that none of these populations have
entered a starvation state. Instead, these trends reflect highly dy-
namic and variable transcriptional responses (and potentially,
metabolic and growth rate variability) over short time scales, that
seem to be dictated by surrounding environmental and nutrient
variability.

Fig. 3. Periodic gene expression in Ostreococcus- and Synechococcus-assigned transcripts. (A and B) 48-h time series of observed (points) and fitted (lines)
transcript abundances is shown for selected transcripts from Ostreococcus (A) and Synechococcus (B) populations. Fitted values with solid lines represent
transcripts with significantly periodic expression, whereas dotted lines represent best-fit curves for transcripts not passing significance cutoffs. For reference,
plots of relative light levels are shown. (C and D) Plots showing peak expression times for all orthologs (grey circles) and significantly periodic orthologs (red
circles) assigned to major cellular functions in Ostreococcus (C) and Synechococcus (D). KEGG pathways for photosynthesis proteins and antenna proteins were
combined for the purposes of this plot along with purine and pyrimidine metabolism pathways. Ostreococcus (OC) and Synechococcus (SC) ortholog cluster
designations for transcripts in A and B: ATPF0A, ATP synthase subunit A, OC 9555 (plastid-encoded), SC 1180; Circadian Clock Associated 1 (CCA1) and Timing
of Cab expression 1 (TOC1), Ostreococcus clock genes OC 3107 and 7575; COX1, coxA, cytochrome c oxidase subunit I, OC 9595 (mitochondrial), SC 1503; Cyclin
B, mitotic cyclin B, OC 658; kaiA, -B, and -C, Synechococcus clock genes SC 332, 3370, and 334; ND1, ndhA, NADH dehydrogenase I subunit 1, OC 9600
(mitochondrial), SC 210; PAR, photosynthetically available radiation; psaA, PSI apoprotein A1, OC 9562 (plastid-encoded), SC 2040; psbA, PSII reaction center
D1, OC 9541 (plastid-encoded), SC 1091; rbcS, rbcL, RuBisCo large and small subunits, OC 6808, SC 130.
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Synchronous Transcriptional Dynamics Within Pelagibacter, SAR86,
and MGII. Although Pelagibacter exhibited the strongest and most
coherent patterns in transcript abundance among the three proteo-
rhodopsin-bearing heterotrophic populations examined, SAR86 and
MGII populations also exhibited transcriptional changes over the
2-d time series. Interestingly, these patterns seemed to reflect syn-
chronous responses to the same cryptic environmental changes that
appeared to be driving Pelagibacter transcription dynamics. The de-
gree of similarity between samples for the three organisms was sig-
nificantly related (Fig. 6A), suggesting that the overall transcriptional
profiles of these groups were changing simultaneously, or nearly so.
This relationship was even more evident when Procrustes tests were
used to compare only the first two axes of population-specific prin-
cipal components analyses (Fig. 6B), restricting the comparison to
the strongest trends in sample-to-sample variability. Furthermore,
the relative abundance of transcripts involved in ribosome bio-
synthesis and oxidative phosphorylation was positively correlated
across the 13 time points for the three groups (Fig. 6C and SI Ap-
pendix, Table S6). Similarly, independent geneARMA analyses of
the three taxa identified gene clustermodels exhibiting similar trends
in transcript abundance across the three datasets (SI Appendix, Fig.
S18). Altogether, these analyses suggest that all three populations
were responding to a common environmental signal, exhibiting
global, synchronous changes in taxon-level taxonomic profiles.
Among heterotrophic marine picoplankton, Pelagibacter,

SAR86, and MGII have been hypothesized to catabolize different
types of carbonmolecules (14, 15, 21, 26). Pelagibacter seems to use
simple peptides, amino acids, osmolytes, and single carbon com-
pounds, whereas the SAR86 and MGII groups have been hy-
pothesized to specialize in the consumption of larger, more
complex polymers, such as proteins, polysaccharides, and lipids.
Consistent with these predictions, the most abundant transcripts
for each of the taxon bins reflected very different metabolic profiles
(SI Appendix, Fig. S19). Pelagibacter expressed ABC transporters

for small peptides, osmolytes, and dicarboxylic acids at high levels,
consistent with genomic analyses (26). SAR86 transcripts included
a large number of TonB-dependent receptors, previously hypoth-
esized to mediate uptake and metabolism of large polysaccharides
and lipids in this organism (14). Finally, the MGII transcriptome
was dominated by large cell surface proteins and amino acid
transporters, consistent with a hypothesized ability to metabolize
large proteins (15). Therefore, although these three very different
populations exhibited similar trends in expression of pathways in-
volved in growth and energy metabolism, they did not show similar
trends in most metabolic pathways (SI Appendix, Table S6). This
trend suggests that the synchronous transcriptional dynamics
observed for these groups may reflect bulk changes in the

Fig. 4. Comparison of peak expression times for periodically expressed
Ostreococcus orthologs in field populations vs. a laboratory pure culture.
Each point represents 1 of 1,290 transcripts detected as significantly periodic
in our field study reported here and a previous microarray study of O. tauri
(18). For this comparison, microarray data (as reported in Gene Expression
Omnibus accession no. GSE16422) were reprocessed using our harmonic re-
gression method with a Gaussian error model.

Fig. 5. Analysis of Pelagibacter transcriptional profiles. (A) Heat map
showing relative abundance of major metabolic pathways among Pelagi-
bacter-assigned sequences. Hierarchical clustering of samples and pathways
used average-linkage clustering based on Pearson correlation coefficients.
For each pathway, the fraction of transcripts assigned to each pathway that
is significantly correlated (based on Poisson regression) with the overall
pathway-level signal is listed. (B) Principal components analysis of Pelagi-
bacter transcriptional profiles. Axes represent the first two components and
are labeled with the proportion of variance explained by each. Vector fits for
selected KEGG pathways (ABC, ABC transporters; OxP, oxidative phosphor-
ylation; Rib, ribosomal proteins) were highly significant (P < 0.0001) and are
shown in red. Of the environmental data collected, only surface PAR (blue;
P = 0.003) was significantly correlated (P < 0.05) with the ordination. (Inset)
Loadings of Pelagibacter transcripts on the principal component axes.
Transcripts significantly correlated with either ribosome or ABC transport
pathways are colored based on their relationship with those pathways (cyan
for orthologs positively correlated with ribosome and/or negatively corre-
lated with ABC transport; magenta for the opposite relationship).
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availability of a broad range of carbon-based substrates rather
than responses to the availability of a single common nutrient or
substrate limitation.
Overall, the Pelagibacter population showed a stronger global

transcriptional response, involving a larger number of transcripts,
than the transcriptional responses observed for the SAR86 and
MGII populations. Although some of this difference may be due
to the higher sequence coverage of Pelagibacter (because of its
smaller genome and greater overall abundance), SAR86 andMGII
showed less sample-to-sample variation between transcriptional
profiles than did Pelagibacter, even when all datasets were resam-
pled to represent an even coverage level. Pelagibacter species have
been shown to have highly streamlined genomes with reduced
regulatory machinery (26). As a result, these α-proteobacteria may
exhibit a smaller range of transcriptional dynamics in response to
complex environmental cues, resulting in strong global transcrip-
tional dynamics. In contrast, SAR86 and MGII, with larger
genomes and corresponding increased metabolic and regulatory
versatility, might be expected to exhibit more complex time- and
location-specific behaviors not as easily distinguished using cluster-
and correlation-based approaches. Alternatively, the SAR86 and
MGII populations may simply respond less strongly to the envi-
ronmental cues that elicited strong Pelagibacter responses. It is also
possible that higher-molecular weight, more-complex substrates
preferred by SAR6 and MGII had a more patchy distribution than
the simple peptides and osmolytes used by Pelagibacter. As a result,
gene expression in SAR86 and MGII populations might be
expected exhibit a larger degree of cell-to-cell variability, resulting
in weaker or less synchronized transcriptional dynamics when av-
eraged at the temporal (∼40 min) and spatial (∼1 L) scale of our
sample collections.
Notably, although many pathway-level signals from SAR86

and MGII populations were individually correlated with path-
way-level signals from Pelagibacter, these populations showed
significantly less congruence to each other (SI Appendix, Table

S6). The metabolic profiles of SAR86 and MGII, although in-
dicative of different substrate preferences, share the commonality
of the binding and hydrolysis of large polymeric substrates, such
as cell wall and membrane components. The overall abundances
of SAR86 and MGII transcripts in the metatranscriptomes are
negatively correlated (correlation coefficient = −0.55, P value =
0.047), which may suggest some degree of niche overlap and
competition between these organisms. In contrast, Pelagibacter
specializes in a very different fraction of the substrate pool, in-
cluding low-molecular weight monomers, such as carboxylic acids
and amino acids, that are likely to be generated as a byproduct of
both SAR86 and MGII metabolic activities.
Altogether, our results revealed unexpected interspecies syn-

chronicity in the regulation of some pathways, as well as a sur-
prising degree of heterogeneity in the transcriptional profiles
among photoheterotrophic picoplankton populations. Tran-
scripts encoding ribosomal proteins and genes involved in oxida-
tive phosphorylation were previously identified as highly variable
between samples collected at distant geographic locations (5).
Notably, we observed asmuch variability in transcript abundance in
these pathways over only a few hours time and in the same water
mass, as had been previously reported in transoceanic meta-
genomic surveys. These data suggest that activity levels and respi-
ration rates for heterotrophic populations may be spatially and
temporally patchy in marine surface waters, potentially due to
episodic substrate releases, such as small-scale lytic events and
other stochastic environmental processes. Additional exploration
of these behavioral patterns and the environmental cues that
control them is likely to provide significant insight into niche spe-
cialization of key microbial groups in the planktonic environment.

Implications. Episodic environmental variation and subsequent
microbial responses play significant roles in shaping marine bio-
geochemical cycles (1). To better understand and predict micro-
bial community responses to such events, it is critical to observe
them on relevant temporal and spatial scales in situ. Here, we

Fig. 6. Synchronous transcriptional dynamics among three heterotrophic populations. (A) Mantel test showing a significant relationship in transcriptome
dissimilarity for Pelagibacter vs. SAR86 (Upper) and MGII (Lower) populations. Comparisons used pairwise Euclidean distances (square root of the sum of
squared differences in abundance for all transcripts). (B) Procrustes analysis revealing a large degree of congruence in sample clustering patterns for the three
heterotrophic populations. In Procrustes tests, the results of principal components analyses are rotated and scaled to identify similarities in clustering patterns
while maintaining relationships between samples. A smaller distance between points corresponding to a single sample reflects a more similar clustering
pattern. Rotated and scaled SAR86 (blue) and MGII (green) analyses are overlaid on the Pelagibacter (red) results from Fig. 5B. Samples are labeled according
to position in the time series (9/16 2:00 PM is sample 1). Procrustes correlation (m12 ) and permutation-based significances are shown for each comparison. (C)
The relative abundance of transcripts for ribosomal proteins (Upper) and genes associated with oxidative phosphorylation (Lower) within each taxon bin at
each time point. Pearson correlation coefficient and P value are listed for relative abundances of these pathways within the Pelagibacter vs. their abundances
in SAR86 and MGII transcriptomes.
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show that Lagrangian sampling combined with microbial com-
munity transcriptome analyses can resolve microbial dynamics on
time scales of hours to days, yielding robust transcriptional ex-
pression patterns. Within a given taxon, the presence of re-
producible temporal patterns in the genome-wide transcription
profile indicated that a large fraction of individual cells within
a given population was responding synchronously, at least within
the temporal resolution of our measurements. Furthermore, dis-
parate heterotrophic taxa within the community also seemed to be
simultaneously responding to similar environmental cues but
expressed different functional gene suites in response to them,
suggesting a potential means by which multispecies metabolic and
biogeochemical processing might be coordinated.
The specific environmental factors that influence the observed

synchronized transcriptional regulation of diverse heterotrophic
microbial species are unknown at present. It may be that each
species population is responding independently to the same (or
simultaneously occurring) physicochemical environmental cues.
However, we cannot rule out that these transcriptional patterns
are partly influenced by species-to-species communication and
signaling cascade events. It is well-known that specific auto-
inducer molecules can elicit complex regulatory responses within
and between disparate bacterial species (27). It, therefore, seems
possible that specific physicochemical environmental cues might
be sensed initially by only one or a few species. These cues might
then be indirectly broadcast to other species by small-molecule
signaling, thereby transmitting the response to other community
members. Future work, using higher-frequency sampling of mi-
crobial community transcriptional profiles, may provide the tem-
poral resolution necessary to distinguish between these different
cross-community sensing and response modalities. Regardless
of the specific mechanism(s) of multipopulation environmental
sensing and response, both the above possibilities could elicit the
multispecies transcriptional events that we observed. This tem-
poral entrainment could conceivably serve to coordinate down-
stream biogeochemical processing and nutrient regeneration. For
example, hydrolysis of higher-molecular weight organic com-
pounds by SAR86 and GII Euryarchaea could produce monomers
that were subsequently processed by Pelagibacter.
Very little is known about the actual metabolic rates of specific

heterotrophic picoplankton species in the environment. Most in
situ growth estimates have been derived from bulk averaged
radioisotope incorporation into DNA or protein across entire
(heterogeneous) assemblages. Complex predator–prey dynamics
involving phages and protists further complicate the measure-
ment of species-specific growth rates in situ. The transcriptional
profiles of heterotrophic marine picoplankton that we observed
suggested that disparate species were responding rapidly to en-
vironmental variability with frequent and synchronized up- or
down-regulation of transcripts in many pathways. In particular,
gene transcript abundance in growth-related pathways, like ri-
bosome biosynthesis and oxidative phosphorylation, varied sig-
nificantly over the 2-d sampling period in these populations.
Notably, we did not observe gene expression patterns that would
suggest transition into the stationary phase over the 2-d sampling
period. In total, these data suggest that frequent periods of
metabolic acceleration and deceleration, even over the time span
of only one doubling, may be a common modality in heterotro-
phic marine picoplankton species in situ.
The kinetics and regularity as well as quantitative and quali-

tative attributes of microbial response dynamics in situ have
implications beyond biogeochemical considerations. Short time-
scale microbe–environment and microbe–microbe interactions
ultimately give rise to microbial population variation, functional
variability, microbial community succession, and large-scale tax-
onomic shifts over days, weeks, and months and across seasons.
A better understanding of short time-scale ecological microbial
community processes should therefore provide a new perspective

on longer-term community assembly, structure, and functional
patterns. Future studies using the approaches we describe here
have potential to yield deeper insight into microbial environ-
mental interactions and their ecological consequences in a dy-
namic and constantly changing environment.

Methods
Sample Collection. Seawater samples (1 L) were collected along the central
California coast in September of 2010 using an Environmental Sample Pro-
cessor (ESP) (6, 10) suspended beneath a free-drifting surface float at 23-m
depth. Microbes in the 0.22- to 5-μm size fraction were collected and pre-
served as previously described (6) but with a reduced incubation time in
RNALater (Ambion) of 2 min per wash, which yields RNA of similar integrity.
The instrument was recovered on September 19, 2010, and sample filters
were moved to individual vials for long-term storage at −80 °C within 36 h.

Library Preparation and Sequencing. Approximately one-half of eachfilter was
used for extraction of total community RNA and subtractive hybridization of
rRNAs as previously described (28). Synthesis of antisense rRNA probes used
DNA extracted from 5.8- to 7.1-L seawater samples collected using a rosette
sampler at 23-m depth near the ESP at 10:00 AMon September 15, 17, and 19.
PCR products from the three dates were pooled for use as templates for
synthesis of bacterial, archaeal, and eukaryotic large- and small-subunit rRNA
probes. Approximately 150 ng total community RNA were hybridized with
300 ng each bacterial, 100 ng each archaeal, and 150 ng each eukaryotic
small- and large-subunit probes. Probe removal used two successive 5-min
incubations with 75 μL washed Streptavidin beads (NEB) in a final volume of
50 μL. Purified and concentrated message was linearly amplified and con-
verted to cDNA as described previously (2).

A GS FLX Titanium system (Roche) was used to sequence cDNA. Library
preparation followed the Titanium Rapid Library Preparation protocol. To
improve the retention of smaller cDNA molecules, adaptor-ligated libraries
were not diluted before size selection with AMPure XP beads. Libraries were
quantified using the Titanium Slingshot kit (Fluidigm) and added to emulsion
PCR reactions at 0.1 molecules per bead. Sequencing and quality control
followed the manufacturer’s recommendations.

Sequence Analysis and Annotation. Our analytical pipeline for sequence an-
notation is summarized in SI Appendix, Fig. S3. Metatranscriptomic sequence
libraries were screened for rRNA-derived transcripts and duplicates as pre-
viously described (28). Putative coding sequences with bit scores ≥ 50 were
initially identified by BLASTX against the NCBI nonredundant peptide data-
base as downloaded on May 31, 2010. After this initial analysis, additional
reference sequences became available for SAR86 cluster Gammaproteobac-
teria and MGII Euryarchaea. All unique nonrRNA sequences were again
compared by BLASTX with these newly released genome sequences, retain-
ing those sequences with bit scores ≥50 that were greater than or equal to
their best match in the previous NCBInr database search (SI Appendix, Fig. S3).
Sequence classification and annotation used the highest-scoring database
match and followed the NCBI taxonomy (with the exception of α-proteo-
bacterium HIMB114, which we included within the Pelagibacter). For
sequences matching equally well to multiple genes within the database, all
matches were required to fall within the Chlorophyta for assignment to
Ostreococcus, the Cyanobacteria for Synechococcus, and the SAR11 cluster
for Pelagibacter. All top-scoring matches were required to fall within the
SAR86 cluster or the MGII Euryarchaea for assignment to those taxon bins.
Sequences were mapped to a single reference gene for annotation purposes,
with preference given to references that were abundant in the dataset and
references derived from sequenced genomes. Data files containing all taxon-
specific transcript sequences for Ostreococcus, Synechococcus, Pelagibacter,
SAR86, and Group II Euryarchaea are available from the authors on request.

Within each major taxonomic bin, sequence counts for genes present in
multiple referencegenomeswere compiled togenerateortholog cluster-based
transcript abundances. This approach was implemented to avoid artificial di-
vision of transcript pools from environmental organisms among multiple im-
perfectly matched reference sequences. Pairwise reciprocal best BLAST hits
between translated coding sequences of reference genomeswere compiled to
generate ortholog cluster assignments. Identification of shared genes in
Ostreococcus used the previously described e-value–based significance cutoff
of 10−8 (29), whereas Synechococcus, Pelagibacter, andMGII comparisons used
an e-value cutoff of 10−5 and required 30% alignment identity over 80% of
the longer sequence; SAR86 comparisons used the 10−5 e-value and 30%
identity cutoffs, but (because of the highly fragmented nature of the SAR86
assemblies) only 50% of the longer sequence was required to align. Func-
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tional annotation of ortholog clusters used the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (30) annotations where available. Key species lacking
curated annotations were analyzed using the KEGG automated annotation
pipeline (31). In some cases, metatranscriptomic sequences were mapped to
reference genes that were not derived from sequenced genomes (i.e., envi-
ronmental clones). Where possible, these references were assigned to
ortholog clusters based on single-directional peptide BLAST (significance
cutoffs as above). Full lists of ortholog cluster membership, annotation, and
results of statistical analyses are available in Datasets S1, S2, and S3.

Functional Clustering of Transcriptional Profiles. Cluster-based analyses were
used to examine global patterns of transcriptionwithin and across taxon bins.
Becausemany of these analyses assume normally distributed data, a variance-
stabilizing transformation (32) was applied before analysis:

x ¼

8>>><
>>>:

sin−1
ffiffiffiffi
c
N

r
if c>0

sin−1
ffiffiffiffiffiffiffi
1
4N

r
if c ¼ 0

9>>>=
>>>;
;

where c is the count of each transcript and N is the library size at each time
point. Mantel tests, principal components analyses, and Procrustes tests used
variance-stabilized transcript abundances and were carried out using the
vegan software package (33).

The geneARMA (16) package was used to identify global patterns of
coregulation among Ostreococus, Synechococcus, Pelagibacter SAR86, and
MGII transcripts. This algorithm performs model-based soft clustering of
transcriptional profiles using an autoregressive moving average model,
ARMA(p,q), for the longitudinal covariance structure and Fourier series
functions to model gene expression patterns. Data were filtered before
analysis such that the maximum count for a row (ortholog time series) was
greater than 5 and the sum of the row was greater than 10. For each
dataset, the algorithm was run multiple times (100–400 iterations) from
random initializations for P = 1–2 autocorrelation terms, q = 0–1 moving
average terms, K = 1–3 Fourier function terms, and J = 1–40 clusters. The
iteration possessing the highest likelihood for each parameter combination
was used for final inference, and the Akaike Information Criterion was used
to assess model complexity. The optimal model configuration, as identified
by Akaike Information Criterion, for all five datasets was an ARMA(1,1)
covariance structure and a three-term Fourier series mean function, and it
included 39 clusters for Ostreococcus, 25 clusters for Synechococcus, 13

clusters for Pelagibacter, 7 clusters for SAR86, and 9 clusters for MGII (SI
Appendix, Fig. S12).

Regression Tests for Count Data. Gene-by-gene tests to identify transcripts
exhibiting sinusoidal periodicity or covariance with pathway-level functions
used Poisson log-linear regression as implemented in the R software package
(34). Library size offsets were based on the total number of transcripts
assigned to a given taxon at each time point. For periodicity tests, the si-
nusoidal function xt ¼ Acos

�
2π
24t þ ω

�
, where A represents the amplitude, ω is

the phase, and t is the midpoint of the sampling time in hours, was reduced
to the linear equation xt ¼ αcos

�
2π
24t

�þ βsin
�
2π
24t

�
, where α ¼ A cosω and

β ¼ −A sinω.
The significance of each model fit was assessed using both a χ2 test (as

implemented in the anova.glm function) and a permutation test. Permuta-
tion P values were calculated as the fraction of randomized datasets with
a model fit (evaluated using the difference between the null and residual
deviance) as good or better than model fits of the actual experimental data.
To optimize computational resources, permutations continued until at least
10 randomized datasets with likelihood ratios equal to or exceeding the
observed data had been identified (500–50,000 permutations). False dis-
covery rate-corrected (35) P values of at least 0.1 from both tests were re-
quired for a relationship to be considered significant.
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