
Biological data are exploding, both in size and complex-
ity. High-throughput instruments are now routinely 
used in individual laboratories around the world in 
basic science applications as well as in efforts to under-
stand and treat human disease. This trend towards the 
democratization of genome-scale technologies means 
that large data sets are being generated and used by indi-
vidual bench biologists. Several software platforms and 
database systems have been developed for basic data 
analysis and integration1–3 (BOX 1). However, for anyone 
to extract biological insights from these data sets, famil-
iarity with increasingly sophisticated computational 
techniques is required. Further complicating matters 
is that new genomic data are often best interpreted in 
the context of the heterogeneous large-scale data sets 
that have already been deposited in publicly available 
repositories. Finally, efficient means for storing, search-
ing and retrieving data are of foremost concern as they 
are necessary for any analysis to proceed. Fortunately, 
an arsenal of algorithmic ideas — applicable in a wide 
variety of biological settings — can be deployed to 
address these challenges.

Nowhere is the data deluge more apparent than in 
the area of high-throughput sequencing. In the past two 
decades, improvements in genomic sequencing capabil-
ity have led to an exponential growth in the amount of 
publicly available sequence data that far outstrips the 
growth predicted by Moore’s law4–6. Moore’s law says 
that computing power and storage capacity doubles 
every 18 months, whereas the volume of new sequence 
data has grown tenfold every year since 2002 (REFS 7–11). 
The widening gap between data generation and com-
puting power implies that many of our established ways 

of analysing smaller data sets simply cannot scale, not 
even with faster computers or with cloud computing or 
parallel computing. Further, the increasing diversity of  
experimental techniques, the high dimensionality  
of the resulting data, the noise in high-throughput 
measurements and the nature of the underlying biology 
result in substantial additional challenges in omics data 
analyses. The goal of this Review is to highlight a range 
of fundamental algorithmic ideas that have been suc-
cessful in tackling omics data sets and that serve as a 
launching point for extracting biological insights from 
these data. We focus on applications in three diverse 
but important areas — sequencing, transcriptomics and 
networks — as each showcases a distinct aspect of what 
we believe are the main computational challenges fac-
ing us: algorithmic efficiency to handle large data sets, 
sensitive signal extraction from multidimensional data  
and contextualization of new data within existing  
data sets. In this Review, we primarily focus on algorithms 
for these three areas, whereas other important chal-
lenges, such as metagenomic12 and proteomic analysis13,  
will not be covered. Further, within our areas of focus, 
it is our hope that a survey of the underlying computa-
tional techniques will be helpful in guiding practitioners 
in the analysis of their data sets.

We begin with a survey of problems that arise in 
high-throughput sequencing. We consider problems 
that arise at multiple stages in the assembly, mapping, 
storage and retrieval pipeline. We show how algorithmic 
insights involving sophisticated data structures, graph 
algorithms and data compression can be deployed 
to attack some of the computational bottlenecks in 
sequencing. Next, we describe sensitive data mining and  
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Cloud computing
The use of computing 
resources distributed in the 
Internet to store, manage and 
analyse data, rather than doing 
so on a local server or personal 
computer.

Computational solutions for  
omics data
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Abstract | High-throughput experimental technologies are generating increasingly 
massive and complex genomic data sets. The sheer enormity and heterogeneity of these 
data threaten to make the arising problems computationally infeasible. Fortunately, 
powerful algorithmic techniques lead to software that can answer important biomedical 
questions in practice. In this Review, we sample the algorithmic landscape, focusing on 
state‑of‑the-art techniques, the understanding of which will aid the bench biologist  
in analysing omics data. We spotlight specific examples that have facilitated and enriched 
analyses of sequence, transcriptomic and network data sets.
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Parallel computing
A form of computation that 
allows numerous calculations 
to be carried out 
simultaneously, thereby 
accelerating computation.  
On the basis of this  
principle, many large-scale 
computational tasks can then 
be divided into smaller ones 
and solved on multiple 
machines concurrently.

Machine learning 
techniques
Empirical data are taken as 
input, the relationship among 
the data is mathematically or 
statistically modelled, and 
patterns or predictions are 
generated. Supervised learning 
algorithms infer a function from 
labelled data features and 
predict labels on future input; 
unsupervised learning 
algorithms model the patterns 
or the distribution of a given 
unlabelled data set.

machine learning techniques for making sense of transcrip-
tional data sets and look at their applications to trans-
lational biomedicine. Finally, we discuss algorithms for 
integrating heterogeneous omics data within the context 
of biological networks, for which a rich set of graph-
theoretical formulations and algorithms can be lever-
aged. We close with a brief discussion of related areas 
of research that are in need of better computational 
tools as omics data accumulate, as well as challenges 
that remain in developing such tools and disseminat-
ing them to the biological community. Note that links 
to Web pages and references for all of the software  
packages described in this paper are listed in TABLE 1.

Processing, storage and retrieval
Efficient processing, storage and retrieval of large-
scale sequencing data sets are crucially important for 
modern ‘big-data-driven’ life science. In this section, 
we describe current solutions to these problems on the 
basis of state‑of‑the-art approaches for indexing large-
scale genomic data (BOX 2; FIG. 1). The key underlying 

idea of these approaches is that by smart pre-processing,  
it is possible to store sequence data in a form that 
makes subsequent computations significantly faster.

Genome assembly. Next-generation sequencing tech-
nologies, including 454, Illumina, SOLiD and ion 
semiconductor, can now yield hundreds of millions of 
short-read sequences (snippets of genomic sequences 
of typically less than several hundred base pairs)14,15 
per human genome. With these evolving technolo-
gies, several important computational challenges have 
emerged. Among them, genome assembly is one of the 
most fundamental problems to address. Before any 
kind of genomic analysis can commence, it is impor-
tant to generate a template sequence (that is, a reference 
genome) de novo, to which sequences from individu-
als and/or species can be compared against and with 
which variations can be analysed. Although the quality, 
depth and coverage of sequencing technologies have 
vastly advanced over the past several years, genome 
assembly from sequencing data remains a challenging 

Name Main function Open source? URL

Software platforms

Bioconductor General purpose Yes http://www.bioconductor.org

Taverna General purpose Yes http://www.taverna.org.uk

Galaxy Sequence analysis Yes http://www.galaxyproject.org

GenePattern General purpose Yes http://www.broadinstitute.org/cancer/
software/genepattern

Cytoscape Network analysis Yes http://www.cytoscape.org

BioDAS Structural biology Yes http://www.biodas.org

Database systems

BioMart General database Yes http://www.biomart.org

Addama Heterogeneous database Yes http://www.systemsbiology.org/addama

SDCubes Heterogeneous database Yes http://www.semanticbiology.com/software/
sdcube

Box 1 | Platforms for biological data analysis

Software platforms for biological data analysis
A long-standing challenge for practitioners is the proper use of software, including, for example, choosing suitable 
algorithms, installing software, setting correct parameters and assembling multiple programs into an integrative 
pipeline. These issues have become even more serious in the omics era, when high-throughput experiments have 
facilitated numerous large-scale analyses, thus requiring increasingly sophisticated computational tools. To address 
this need, multiple integrative software platforms have been developed with user-friendly interfaces. Some of these 
tools, such as Galaxy and Bioconductor, also aim to increase the ease of reproducibility of analyses. Computational 
scientists can then easily distribute their programs through such platforms. Some representative platforms are listed 
in the table.

Biological database systems
Similarly to the accessibility of computational tools, coordination of omics data sets can be difficult. Data sets are 
usually generated by different laboratories and can have different dimensionalities and organization. There have been 
substantial efforts towards formatting, storing and calibrating data sets, from the early Protein Data Bank, the US 
National Center for Biotechnology Information (NCBI) sequence data sets and the University of California, Santa Cruz 
(UCSC) Genome Browser164, to very recent consortia, such as the well-known ENCODE165 and modENCODE166 projects. 
To allow better sharing of data, several biological database systems have been developed to provide easy access to 
heterogeneous data sets for biologists. Many of these systems have also been integrated with software platforms, such 
as the ones mentioned above, so that researchers can build workflows for their analyses without writing extra code to 
integrate multiple programs.
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Table 1 | Representative software

Software Data sets Techniques Problem Availability Refs

Storage and retrieval of large data sets

CaBLAST and 
CaBLAT

Genomic sequences  
and database

Edit script compression Genome sequence 
search

http://cast.csail.mit.edu 45

BWA NGS reads, reference 
genomes

Burrows–Wheeler 
transformation

Read alignment http://bio-bwa.sourceforge.net

Bowtie and 
Botwie2

NGS reads, reference 
genomes

Burrows–Wheeler 
transformation

Read alignment http://bowtie-bio.sourceforge.net 31,32

SOAP and SOAP2 NGS reads, reference 
genomes

Burrows–Wheeler 
transformation

Read alignment http://soap.genomics.org.cn 35,168

mrsFAST NGS reads, reference 
genomes

Cache-oblivious data 
structures and algorithm

Short read alignment http://mrsfast.sourceforge.net 38

ABySS NGS reads or sequence 
fragments

De Bruijin graph De novo assembly http://www.bcgsc.ca/platform/
bioinfo/software/abyss

24

Velvet NGS reads or sequence 
fragments

De Bruijin graph De novo assembly http://www.ebi.ac.uk/~zerbino/
velvet

21

SGA NGS reads or sequence 
fragments

FM‑index De novo assembly https://github.com/jts/sga/wiki/
SGA-Design

26

Cactus Whole-genome 
sequences

Cactus graph Multiple sequence 
alignment

http://hgwdev.cse.ucsc.edu 169

Data mining for transcriptomics

IDA Gene expression and 
perturbations

Causal graphical models Building regulatory 
network

http://cran.r-project.org/web/
packages/pcalg

89

Concordia Multiple gene 
expression data sets

Recursive PCA Gene expression 
analysis

http://concordia.csail.mit.edu 106

CONEXIC Gene expression and 
CNV data sets

Module analysis Cancer driver gene 
identification

http://www.c2b2.columbia.edu/
danapeerlab/html/conexic.html

88

PEER GWAS and gene 
expression data

Sparse signal recovery Interpretation analysis 
of gene expression

http://www.sanger.ac.uk/
resources/software/peer

95,96

PARADIM and 
PARADIGM-SHIFT

Gene expression,  
CNVs and pathways

Bayesian networks Pathway analysis http://sbenz.github.com/
Paradigm

97,98

Integrative interactomics

HotNet Networks and mutation 
data

Flow and diffusion Cancer subgraphs http://compbio.cs.brown.edu/
projects/hotnet

148

ResponseNet Networks, expression 
data, genetic screens

Flow-based approach Pathway 
reconstruction

http://bioinfo.bgu.ac.il/respnet 122

IsoRank and 
IsoRankN

Networks across 
organisms

Spectral graph algorithm, 
graph matching

Network alignment http://isobase.csail.mit.edu 134,135, 
140

MATISSE Networks and 
expression data

Integrative subnetwork 
detection

Subnetwork detection http://acgt.cs.tau.ac.il/matisse 155

SPICI Weighted networks Local network clustering Subnetwork detection http://compbio.cs.princeton.edu/
spici

118

STEINERNET Networks and seed  
set of proteins

Steiner tree Subnetwork detection http://fraenkel.mit.edu/steinernet 124

NetGrep Networks and numerous 
protein annotations

Frequent pattern mining Pattern search in 
networks

http://genomics.princeton.edu/
singhlab/netgrep

133

DAPPLE Networks and disease 
loci or disease genes

Permutation test Disease subnetwork 
association

http://www.broadinstitute.org/
mpg/dapple/dapple.php

143

PrincePlugin Networks and disease 
genes

Network flow Finding disease- 
associated genes

http://www.cs.tau.ac.il/~bnet/
software/PrincePlugin

145

DADA Networks and disease 
genes

Random walk Finding disease- 
associated genes

http://compbio.case.edu/dada 147

NetBox Networks, mutations  
and CNVs

Shortest path and 
clustering

Cancer subnetworks http://cbio.mskcc.org/downloads/
index.html

149

BWA, Burrows–Wheeler Aligner; CNV, copy number variant; GWAS, genome-wide association study; NGS, next-generation sequencing; PCA, principal  
component analysis.
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task16,17. Accurate genome assembly requires sequencing 
at high depth, and assembling millions of these short 
reads into a full-length genome is computationally dif-
ficult as for each read, contiguous sequences need to be 
identified from a large unstructured pool of short reads. 
In addition to fast assembly algorithms, efficient storage 
techniques are especially important when carrying out 
assembly of large genomes, in which sequencing data 
can be in the terabytes.

Instead of comparing all possible pairs of sequence 
segments, most efficient assemblers, such as EULER18, 
ARACHNE19,20, Velvet21, SOAPdenovo22, ALLPATHS23 
and ABySS24, have been developed using a graph-based 
data structure: the de Bruijn graph (FIG. 1). Assembling 
reads in a de Bruijn graph reduces fragment assembly to 
the classical graph-theoretical Eulerian path problem18,25. 
In this scenario, the goal of the Eulerian path problem is 
to find a trail (that is, a genome sequence or contig) that 

Box 2 | Indexing techniques for sequencing data

Burrows–Wheeler transformation (BWT) is a string transformation that converts highly redundant sequences (for 
example, the human genome) into a format that can easily be compressed (see below). It is carried out by: generating all 
rotations of the input such that each position becomes the starting position exactly once; sorting the rotated sequences 
in alphabetical order; and extracting the last column of all sorted rotations as the output sequence. If there are substrings 
that occur multiple times in the full sequence, then the transformation will cluster these substrings together, resulting in 
single-character repetitions in the final column; hence, the repetitive structure of the output sequence facilitates 
compression. Furthermore, BWT allows an efficient inverse transformation that can fully recover the original sequence 
from the transformed output. These features thus enable BWT to be a useful pre-processor for lossless data compression, 
such as bzip2 and Huffman encoding.

As opposed to rotations used in BWT, a suffix array is a sorted array that indexes all possible suffixes of a sequence (see 
below). The array is constructed by sorting all of the suffixes alphabetically. The order of each entry in the suffix array 
represents the ranking of that suffix in the sequence. By taking the similarity among suffixes, the suffix array can be 
constructed quite efficiently in practice. After a suffix array has been built, queries can be carried out by many different 
algorithms. For instance, binary search compares the query string and the middle element of the array and repeats the 
search on the left or right subarray according to the comparison; this requires only time O(m log(n)), where m is the length 
of the query, and n is the length of the original sequence167. As read length is typically very small (m < 100), and as the 
reference genome length n is substantial, the query time for the suffix array is significantly faster than naive sequence 
matching, which requires O(m n) time. Although further algorithmic advances have increased the speed of suffix array 
queries to O(m) time, the memory required for a suffix array for the whole human genome is very expensive; all suffixes 
need to be stored, and thus the size of the suffix array would be much larger than the size of the genome.

Advantageously, the FM‑index is a hybrid of BWT and suffix arrays. The FM‑index contains the information from all 
suffixes of the original sequence and allows fast subsequence mapping and counting in O(m) time36. See the original text 
in REF. 36 for technical details and illustrations on construction and query operations36 (also see Figure 1 of REF. 30). 
Compared with the space requirement of suffix arrays, only O(n) space is needed for the FM‑index on a genome of 
length n36. These features make the FM‑index ideal for short-read mapping, where the read length m is usually quite 
small, and the size of the reference genome is large. In addition to read mapping, this data structure has been applied 
for genome assembly26.
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Parallel dynamic 
programming
A technique that splits a large 
dynamic programming 
problem, usually by filling a 
table that can avoid redundant 
calculation, into a number of 
subproblems and computes  
all subproblems in parallel using 
multiple central processing 
units (CPUs). The computing 
speed‑up scales almost linearly 
with the number of CPUs.

Multicore computer 
processing units
(Multicore CPUs). Single 
computing processors with  
two or more independent 
computing units (called cores). 
Running multiple instructions 
on multiple cores at the same 
time can increase the overall 
speed of programs.

visits each edge (short read or sequence fragment) in 
the (de Bruijn) graph exactly once. There is a linear time 
algorithm for finding an Eulerian path in a de Bruijn 
graph that assembles contigs from sequence segments 
or reads. Finally, the assembled contigs are merged into 
a full-length genome sequence (see, for example, FIG. 1). 
Consequently, any such graph-based assembly algorithm 
will still take time at least linear in the number of reads 
and will require a substantial amount of memory.

Recently, several crucial evaluations of numerous 
popular genome assemblers, including de Bruijn-graph-
based21–24 and FM‑index-based (see BOX 2 and ‘Read 
mapping in next-generation sequencing’) assemblers26, 
have been carried out on four genomes with a wide  
phylogenetic range and varying degrees of difficulty27–29. 
Although these graph-theoretical methods have substan-
tially advanced genome assembly, they still have great 
difficulty accurately assembling large genomes, such as 
the human genome; different algorithmic strategies lead 
to different trade-offs between correctness and contigu-
ity (which is typically a measure of how much of the 
genome long contigs span). In large genomes, genomic 
repeats often introduce an exponential number of valid 
Eulerian paths in the assembly graph30. This complexity 

poses additional computational challenge for assemblers 
in choosing the best paths by using long-range genomic 
information, such as mate pairs (that is, two reads from 
the same clone) and other scaffolding information. 
Thus, the state of the art would seem to call for further 
improvements in sequencing technology, as well as  
algorithmic advances in assembly.

Read mapping in next-generation sequencing. Smart 
algorithms are also required to identify the genomic 
origin of sequencing reads (that is, to map reads to a 
reference genome). The naive string-matching approach, 
which compares reads with the whole-genome sequence 
for each nucleotide, would incur huge running times 
owing to the substantial number of reads to be aligned 
to a genome. To reduce the high computational cost, 
one solution is to pre-process the genome into a flexible 
and compact data format that allows fast indexing and  
alignment techniques, such as the FM-index (BOX 2).

The Burrows–Wheeler Aligner (BWA), Bowtie and 
SOAP31–35 are arguably the most widely used short-read 
alignment software programs. The core technique used by 
these programs is the FM‑index, which is a compressed 
data structure for sequence data36 (BOX 2). By construct-
ing a suffix-array-like data structure from a Burrows–
Wheeler-transformed37 reference genome, the FM‑index 
compactly represents its sequence more efficiently than 
standard suffix arrays and simultaneously indexes the ref-
erence genome for fast access and mapping (BOX 2). After 
indexing, the time required for read mapping is sublinear 
with respect to the size of the reference genome but at 
least linear with respect to the read data size31–35. The stor-
age space requirement is linear with respect to the size of 
the reference genome, but it can be compressed to save 
space. In addition to read mapping, this data structure 
has also been applied for genome assembly26.

Hardware-accelerated algorithms are also used to 
speed up large-scale, but basic, arithmetic operations in 
read mapping. The recently developed Bowtie2 (REF. 31) 
implements parallel dynamic programming by fully exploit-
ing the computational power of modern multicore central 
processing units (multicore CPUs), thereby accelerating 
gapped long-read alignment several-fold. Another 
read-mapping program, mrsFast38, uses a cache-oblivious  
algorithm. Together with efficient indexing data struc-
tures, these sophisticated computer algorithms make 
various large-scale whole-genome computational tasks 
— from read mapping to downstream analyses, such as 
structural variation detection and SNP base calling —  
possible even on personal computers.

Large-scale genome sequence compressed storage and 
search. As sequencing data rapidly accumulates, one 
challenge is to reduce the size of this data for storage and 
processing. The obvious place to turn is to algorithms 
that compress these genomic data sets, and in fact many 
such compression algorithms exist to reduce the space 
required for storage and transmission39–44. Reference-
based compression methods39,45 align read sequences to 
a reference genome and then store only the differences 
between the new sequence and the reference genome. 

Figure 1 | De Bruijn graph of DNA sequence assembly.  Each directed edge in a  
de Bruijn graph denotes a sequence read or a fragment of fixed length (4 bp in the 
figure); the source node of this edge is a prefix string of the read omitting the last 
nucleotide; the destination node of this edge is a suffix string of the same read (or 
sequence fragment) by omitting the first nucleotide. In the example shown in this 
figure, the top panel is a pool of representative short reads or fragments. In the middle 
panel, each node denotes a unique sequence prefix or suffix segment of length 3 bp 
found in the original reads of length 4 bp. The assembly of DNA sequences (segments) 
is thus represented as a de Bruijn graph. Assembling reads (or sequence fragments) in a  
de Bruijn graph reduces the problem to a fragment assembly problem that can be 
formulated as the goal to find a trail or Eularian path that visits each edge (read or 
fragment) in the (de Bruijn) graph exactly once. Nucleotides with a red background 
occur more than once in the sequence. Numbers on the edges represent an ordered 
Eulerian path through the de Bruijn graph, which can be followed to reconstruct the 
assembled sequence from the compact graph representation.
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Cache-oblivious algorithm
Takes advantage of the  
cache system of the central 
processing unit (that is, the 
local memory of frequently 
accessed data) to avoid 
expensive memory access 
operations and thus to improve 
efficiency; the intrinsic design 
of these algorithms does not 
require computer programs to 
be tuned for machines with 
different cache systems.

Such methods are ideal for the resequencing of well-
studied genomes, and their compression factor increases 
almost linearly with the number of genome sequences. 
Non-reference-based methods, however, usually rely on 
string compression algorithms, which exploit repetitive 
DNA segments; most of them use well-known text com-
pression algorithms, such as gzip, BWT and LZ77, in their 
implementations40,42,46,47. As an improvement tailored to 
sequencing data sets, SCALCE47 uses a locally consistent 
parsing technique that reorganizes the reads such that 
compression algorithms can achieve higher compres-
sion speed and rates. These string-based approaches can  
compress read data sets by factors of 2 to 15.

Compressive storage, however, addresses only a 
part of the problem, because these techniques generally 
require the data to be decompressed before computa-
tional analysis. In addition, any computational analysis, 
such as sequence search, that runs on the full genomic 
library — or even a constant fraction thereof — scales at 
least linearly in time with respect to the size of the library, 
and therefore these analyses effectively grow exponen-
tially slower every year. Popular search algorithms such 
as BLAST48 are becoming too slow, and BLAT49 is soon 
to follow. To address this crucial problem, the paradigm 
of ‘compressive genomics’ was recently introduced45, 
whereby data are compressed in such a way that they 
can be efficiently and accurately searched without  
decompressing first (FIG. 2).

Compressive genomics exploits the redundancy of 
genomic sequences to allow parsimonious storage and 
fast access45. For example, as human genome sequences 
differ on average by only 0.5%50, 200 human genomes 
contain less than twice the unique data of one genome, as  
measured by the number of nucleotides of one full 
genome plus the nucleotides differing from it in the rest 
of the genomes (that is, the nucleotide substitutions, 
insertions, deletions and rearrangements that account 
for the change in each of the remaining genomes). Thus, 
although individual genomes are not very compressible, 
collections of related genomes are extremely compress-
ible45. Intuitively, given highly similar genomes, any 
analysis carried out on one genome accounts for much of  
the computational work towards the same analysis on the 
others. These compressed large genomic data sets can be 
analysed with new algorithms that operate solely on the 
compressed non-redundant data without decompressing 
it. FIGURE 2 presents the CaBLAST and CaBLAT compres-
sive genomics algorithms for BLAST and BLAT that have 
a similar accuracy to BLAST and BLAT yet have runtimes 
that scale sublinear to the total size of genomic data and 
almost linear to that of the non-redundant data.

High-throughput sequencers also provide a power-
ful approach for transcriptome quantification by RNA 
sequencing (RNA-seq)51–53. By sequencing the whole 
transcriptome, researchers are able to identify tran-
scripts and to estimate gene expression levels. As with 
short-read DNA sequence analysis, short reads are either 
mapped to reference genomes and transcriptomes54 or 
assembled de novo55, before transcript counting and data 
normalization. The unique characteristics of RNA-seq 
data present substantial algorithmic challenges in their 

analysis. For instance, the existence of novel gene fusions 
and alternative splicing make mapping and assembly of 
RNA-seq data extremely difficult owing to ambiguity in 
read mapping54,55. Bioinformatic analysis of RNA-seq 
data sets is still in its infancy; in addition to quantifica-
tion of expression levels, substantial work remains to be 
done on interpreting these data56.

Data mining for transcriptomics
RNA-seq51,52 and microarray57 experiments have pro-
duced large repositories of high-dimensional transcrip-
tomic data58. Challenges include identifying cell-specific 
expression signals within tissue profiles, identifying 
regulatory and phenotypic genes and modules, and 
integrating multiple expression data sets for disease-
related analysis. In this article, we focus on some of the 
most recent algorithmic developments in data mod-
elling to decipher and to integrate multiple experi-
ments over transcriptomic data sets. Also relevant are 
excellent review articles on more traditional expres-
sion analysis59,60, data normalization61 and RNA-seq  
data analysis62,56 (for example, integrated pipelines such 
as Tophat, Cufflinks and Cuffdiff 54,63–65).

Identifying cell-specific expression signals. Heterogeneity 
of cell types may confound gene expression analysis. 
Transcriptomic expression methods, such as microarray 
techniques, require a large quantity of mRNA to obtain 
reliable expression levels. As a result, the tissue samples 
used for mRNA preparation often consist of several dif-
ferent cell types. Thus, expression levels based on tissue 
samples with varying cell type compositions are diffi-
cult to compare with or to interpret66,67. This issue is 
particularly problematic when carrying out differential 
analysis between complex disease and normal samples 
in clinical studies.

Figure 2 | Application to sequence search.  a | Flow 
chart of CaBLAST. First, redundancy in the genomic 
database is identified and removed to create a  
unique database consisting of a smaller set of segmental 
exemplars. Only the first occurrence of repetitive 
sequence segments is retained, as represented by the 
blue background, and other similar regions are removed 
(blanked out in the pre-processing step) and encoded in a 
links table to their original locations. The red background 
indicates locations of unique bases within the repetitive 
element. An edit script compression technique45 is used 
to encode similar sequence fragments with reduced 
storage in a compressed database. After the compressed 
database is constructed, a coarse-to‑fine strategy is 
adopted for sequence search. First, a BLAST search is run 
using the query sequence (shown with a pink background) 
against the unique database with a relaxed E value 
threshold to identify high-scoring hits. Second, the 
additional candidate hits are recovered by tracing 
through the links table. Third, BLAST is run against the 
final candidate hits. b,c | CaBLAST storage requirements 
and running time comparisons on uncompressed  
(black) and compressed (blue, full compressed database; 
red, only unique database or coarse search) genome 
sequence databases consisting of 1 to 36 yeast genomes45.
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Linear mixed model
A statistical model that models 
the observed effects from 
multiple different hidden 
factors; the effects are 
additively mixed according  
to the proportions of their 
corresponding factors.

Matrix factorization
A method for decomposing a 
matrix into the product of two 
matrices. It can be applied to 
identify individual factors 
involved in a mixed observation.

Differential geometry
A mathematical discipline for 
studying geometric objects, 
such as curves and surfaces, 
using the techniques of 
differential and integral 
calculus.

Linear programming
A mathematical program for 
the optimization of a linear 
objective function, subject  
to linear constraints. Such 
functions capture the linear 
relationship between variables 
for the problem being 
optimized.

Principle component 
analysis
A tool for transforming a set of 
observations with correlated 
variables into a set of linearly 
independent variables called 
principle components, making 
sure that the first principle 
component accounts for the 
largest variability of the data.

Copy number variant
(CNV). Corresponds to 
abnormal number of copies of 
one or more segments in the 
genome. CNVs can be caused 
by structural rearrangements 
of the genome such as 
deletions, duplications, 
inversions and translocations.

Bayesian network
A statistical model that 
describes the distribution of a 
set of random variables by  
a directed acyclic graph that 
represents the relationship 
among the random variables. 
For example, in a Bayesian 
network for a regulatory 
relationship for a set of genes, 
each variable represents a 
gene and each directed edge 
denotes either activating or 
repressing regulation between 
two genes.

Similarly to deconvolution methods that are used 
in digital signal processing, and that were first used in  
electrical engineering, researchers have developed 
approaches to identify expression signals for each cell type  
from an expression study. Linear algebraic methods62  
have proved to be effective for this task. These  
methods require measured cell type proportions.  
These proportions of cell types are used to weight a  
linear mixed model, which is a statistical model that is fit 
on the basis of the assumption that the overall observed 
expression signal can be constructed from a linearly 
weighted sum of the expression levels from each cell 
type (weighted according to the proportion of cells in 
the sample). After the model is fit, the expression pro-
files for each cell type are identified from overall expres-
sion signals. A similar method has also been designed to 
estimate the tissue components from surgical samples68. 
When the mixed cell type proportions are not available, 
methods based on matrix factorization69 or differential 
geometry70 have been developed to estimate simultane-
ously both mixture proportions and expression profiles 
for each component cell type.

Identifying regulatory genes and modules. Perhaps the 
most fundamental type of analysis is to detect the dif-
ferential expression of gene sets in conditions of inter-
est to infer key genes and pathways (for example, by 
identifying regulatory genes and linked pathways or to 
implicate genes or pathways in a disease-based analysis). 
To accomplish these tasks, numerous statistical meth-
ods, such as gene set enrichment analysis (GSEA)71, 
GenePattern72, joint clustering73,74 and DEseq75, have 
been devised and widely applied to analyse differen-
tially expressed genes and gene sets56,57. A gene mod-
ule consists of a group of genes that jointly carry out 
specific biological functions. Module discovery seeks to 
identify differentially expressed genes or dysregulated 
pathways in disease states, along with the regulatory 
relationships between them. To mine pathways and/
or modules from transcriptome data sets, researchers 
have developed a number of mathematical models76–88. 
Among the most popular are probabilistic graphical 
models, which describe a distribution that can explain 
the observed transcriptome data. The nodes in the 
graph represent the genes (or modules), and the edges 
define the relationship between two genes (or modules). 
Graphical models can thus describe and uncover puta-
tive interactions between genes or modules and have 
been applied to these types of problems arising in gene 
expression analysis.

An important question is what the regulatory rela-
tionships or co‑expression patterns are among genes. 
Over the past decade, graphical models have been 
extensively applied to this problem. IDA (for ‘interven-
tional calculus when directed acyclic graph is absent’)89 
and nested effects models90 are two recently developed 
graphical models that construct putative regulatory 
relationships between genes from transcriptomic data. 
Sparse learning is another recently introduced math-
ematical concept used to mine gene or module regula-
tory patterns. The key idea is that the gene regulatory 

network is sparsely structured; that is, the expression of 
any gene is directly regulated by only a few other genes, 
and this allows a concise representation of genes that 
explain the differential phenomena in gene expression. 
SPARCLE (for ‘sparse recovery of linear combinations of 
expression’) is a machine learning method that finds a 
gene set of minimum size such that its expression profile 
linearly fits the given genes of interest91. For example, 
genes that regulate specific pathways would correlate 
linearly with their targets. This idea is thus formulated 
as a compressed sensing problem and is solved through 
linear programming. This method is purely unsupervised 
(that is, no training data are required). In contrast to 
principle component analysis (PCA)92,93 or correlation-
based methods93,94, SPARCLE is able to find robust 
gene sets of much smaller size from high-dimensional 
transcriptomes (that is, transcriptomes in which a large 
number of gene expression changes are observed), such 
that they can provide potential biological context for 
the given genes of interest. Experimental results also 
indicate that SPARCLE outperforms correlation-based 
approaches in predicting protein–protein interactions 
and genetic associations91. The sparse factor analysis 
method PEER95,96 has been developed to infer a small 
set of ‘hidden cellular phenotypes’ or expression patterns 
in the gene expression data that can explain the highest 
variability in gene expression across multiple samples. 
Similarly to SPARCLE, PEER enforces a sparsity con-
straint on the size of the hidden cellular phenotypes. By 
incorporating biological prior knowledge, the derived 
cellular phenotypes can be used to infer pathways or 
transcription factors.

Identifying gene expression alterations in disease. With 
the recent accumulation of cancer genomic data sets, 
another important problem is to identify genes and 
modules in two-way comparisons between tumour cells 
and normal cells76,88,97,98. For example, CONEXIC com-
pares gene expression data in cancer tissue and normal 
tissue by extending the causal graphical model76, which 
connects gene sets with edges to represent their interac-
tions, to elucidate dysregulated gene modules from can-
cer genomic data88. By leveraging gene expression data 
and the corresponding copy number variants (CNVs), 
CONEXIC builds such module networks to distinguish 
between the CNV-affected genes, which are believed 
to be main drivers of cancer, and abnormally regulated 
genes, which are affected by the dysregulation of gene 
expression and are difficult to identify.

Two other popular pieces of software, PARADIGM 
and PARADIGM-SHIFT, implement a Bayesian network 
to construct pathways from cancer transcriptomic pro-
filing data sets97,98. By taking pathways into account, 
PARADIGM can identify weak but clinically relevant sig-
nals, which are often overlooked when only single genes 
are considered. PARADIGM-SHIFT has been exten-
sively applied in recent cancer genomic research studies,  
including The Cancer Genome Atlas (TCGA)99–101.  
In the future, these ideas may find use in multiclass  
(that is, beyond simply case versus control studies) and 
cross-study analyses as well.
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Steiner tree problem
Formulated on a network  
to find a minimum-length 
subnetwork that interconnects 
a set of seed nodes. Any two 
seed nodes may be connected 
by an edge or a path through 
other nodes.

Random walk
A mathematical formulation of 
a number of successive random 
steps on a graph. It has been 
widely used to explain 
stochastic observations, such 
as diffusion in biological 
networks.

The lack of standardized nomenclature and annota-
tion methods has made large-scale, multi-phenotype 
analyses of multiple tissues and disease states difficult. 
Large-scale gene expression investigations have had 
preliminary success at elucidating phenotypic gene 
expression signals102–104 and applying those signals to 
downstream analyses, such as drug repurposing104,105. 
However, such approaches still directly measure tran-
scriptional differences between two phenotypes, 
inherently imposing subjective decisions about what 
constitutes an appropriate control population. This pre-
supposition can limit the scope of such analyses to dif-
ferentiate between biological processes that are unique 
to a particular phenotype or part of a larger process 
that is common to multiple phenotypes (for example, 
a generic ‘cancer pathway’). To address this limita-
tion, one recently developed approach is Concordia106. 
Here, a ranked list of marker genes for a given complex 
phenotype is generated by querying a gene expression 
database sorted by gene expression intensity for each 
phenotype106,107. Concordia is able to classify tissue types 
with a high degree of accuracy, such as metastasized 
tumour samples, which strikingly resemble their tissue 
of origin106. Similar methods have also been developed 
with linear algebraic techniques to analyse existing dis-
ease signatures108 and to identify gene modules across  
multiple gene expression data sets109.

Integrative interactomics
Transcriptomic and other complex functional genom-
ics data sets that are arising from high-throughput 
experimental biology benefit from analysis in the con-
text of known cellular networks, which provide a holis-
tic framework for interpretation. Although far from 
complete, large-scale networks have been determined 
for numerous organisms, including humans and other 
model organisms110–114. These networks, or interactomes, 
are commonly represented as graphs, in which nodes 
correspond to biological components (for example, 
genes, RNAs, proteins or metabolites), and edges corre-
spond to known interactions among them (for example, 
physical, regulatory or genetic). Integrative interactom-
ics analyses are typically premised on modularity, which 
is a key organizational property of cellular networks 
in which molecules that work together to carry out a 
specific biological process are enriched in interactions 
among themselves115.

Analysis of heterogeneous genomic data sets. Protein–
protein and regulatory interaction networks provide a 
physical ‘scaffold’ with which to uncover modules that 
are specific to conditions of interest. Early pioneering 
work, now implemented as the jActive modules plugin 
for Cytoscape3, introduced the concept of active subnet-
works, which consist of connected regions in physical 
interaction networks that manifest significant expres-
sion changes in specific contexts116. Numerous variations 
of this idea have since been introduced. For example, 
JACS allows for an arbitrary measure of similarity (for 
example, including, but not limited to, co‑expression) 
between pairs of genes with the goal of uncovering 

connected subnetworks that exhibit high similarity117. 
Further, local clustering approaches, such as SPICi, that 
rapidly uncover densely interconnected sets of proteins 
corresponding to functional modules allow enumera-
tion of context-specific modules when interactions are 
weighted by co‑expression values that change depending 
on the condition of interest118. Better methods to deter-
mine the differences between modules uncovered across 
multiple conditions, and to reason about them, represent 
an important avenue for future work.

Network flow — a classic formulation in graph 
algorithms in which each edge has a capacity to carry 
flow that is pumped into the system from source nodes 
— has proved to be a powerful and general concept in 
integrative interactomics (FIG. 3b). An early application 
used flow to propagate biological process annotations 
over a protein–protein interaction network119. Flow 
can also be used to identify proteins that respond to 
a particular perturbation in high-throughput screens 
that are either noisy or incomplete and will therefore 
miss proteins of interest. For example, high-scoring hits 
from an RNA interference (RNAi)-based knockdown 
study in flies were mapped to the protein–protein inter-
action network, and to uncover the affected pathways 
the Influence Flow algorithm computed the simplest 
explanation of a signalling pathway perturbation that 
was consistent with both the network and RNAi data 
by constructing a set of constraints for which the solu-
tions correspond to high-confidence estimates of the 
structure of the pathway120. Flow-based optimization 
is also used in ResponseNet to reconstruct pathways 
from protein–protein and protein–DNA interaction 
networks121,122. A minimum-cost flow approach con-
nects the genetic interactors of a given gene with genes 
that have expression changes when this gene is knocked 
out. The prize-collecting Steiner tree problem provides 
an alternative theoretical formulation to the problem of 
interconnecting a seed set of proteins. In this case, each 
initial hit is associated with a prize, and each interaction 
is associated with a cost. The goal, as implemented in 
SteinerNet, is to identify a subset of the identified hits 
that are connected directly or through intermediate pro-
teins in protein–protein and transcriptional regulatory 
networks, such that the sum of the cost of the chosen 
interactions and the prize of the hits not included is 
minimized123,124.

Cellular networks also serve as a platform from 
which to infer causation in signalling and regulatory 
pathways. Probabilistic models have integrated network 
and expression data from gene knockout expression 
studies to predict cell-signalling cascades125. Random-
walk-based approaches (FIG. 3c) have inferred causal 
genes driving expression variation within mapped 
expression quantitative trait loci (QTLs) by uncovering 
those genes that are visited more frequently in random 
walks initiated at target genes126. The flow of information 
from a locus to target genes has also been determined 
using electric current flow approaches127,128, in which 
each edge is associated with a conductance, and genes 
for which the nodes have the highest current through 
them are predicted to be causal; electric networks have 
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previously been shown to be tightly linked to random 
walks on graphs129. By integrating protein annotations 
into network analysis, potential signal and regulatory 
pathways can be modelled as complex network schemas 

or patterns — with descriptions of proteins along with 
desired topologies and interactions among them — 
and matches rapidly uncovered in interactomes using 
NetGrep and other related tools130–133.
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Figure 3 | Integrative interactomics applications.  a | Schematics of computational formulations that arise when 
incorporating genomic data within a network context. Nodes correspond to biological components (for example, 
genes, proteins or other molecules), and edges correspond to known interactions among them (for example, physical, 
regulatory or genetic). In the left-hand panel, an attribute of interest has been measured for all molecules of the 
network (for example, differential gene expression values, shown in shades of blue and red). The goal is to uncover 
subnetworks that contain genes with similar values of attributes (for example, similarly differentially expressed, as 
shaded in similar colours in this panel). In the middle panel, a subset of genes has been identified as being of interest 
(for example, involved in some disease, shown in blue), and the goal is to uncover additional genes that take part in 
the same underlying pathway or functional module, as suggested by proximity in the network. In the right-hand panel, 
two subsets of genes, shown here in blue and red, have been identified (for example, corresponding to target genes, 
the expression values of which have changed and genes within loci that are associated with these targets), and the 
goal is to find paths in the network connecting these genes. b | Given an initial set of molecules (for example, genes 
that affect a phenotype of interest or that are involved in some disease), subnetworks containing additional genes of 
interest can be inferred using network flow approaches. The initial set of molecules comprises source nodes, from 
which fluid is pumped into the network, as represented by the taps. Each interaction between nodes can be weighted 
(for example, according to an estimate of the reliability of an interaction), and this weight can be used as a capacity to 
restrict the amount of flow that can go over the edge, as shown by the width of the edge. At each iteration of the 
algorithm, a node pumps flow to its neighbours while satisfying capacity constraints, and flow spreads through  
the network from the source nodes. Higher amounts of fluids through a node are shown with darker colours (right). In the 
classic network flow formulation, the amount of fluid in the network is maintained, whereas in other formulations fluid 
is pumped into the source nodes at a constant rate117,160. c | Random-walk-based approaches are also used to identify 
subnetworks from an initial set of molecules of interest. Starting from an initial node (for example, one of a set of 
known disease genes), a neighbour is repeatedly selected at random according to the distribution of transition 
probabilities between nodes, which can be set uniformly or based on estimates of the reliabilities of interactions  
or some other attribute of interest, such as co‑expression between genes. In most applications, the walker also has 
some probability of staying at its current position at each step or jumping to any node chosen according to a 
pre-specified probability distribution (for example, to each disease gene with equal probability). In the shown 
example, at each time point, the distribution of the walker’s position is shown in blue. In the fourth time step (right), 
the walker is equally likely to be in one of two locations, and at each subsequent step, the probability of the walker 
being at each location can be estimated. After the probability estimates have converged, proteins are ranked (for 
example, as candidate disease genes) according to the probability that the walker is at the corresponding node.
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Eigenvalue problem
The aim of this is to find a 
non-zero vector (that is, 
eigenvector), given a square 
matrix, such that the 
multiplication of the two is only 
different by a scalar factor.

Set cover
Given a set of elements and 
subsets, the goal is to find the 
minimum number of subsets 
that cover all the elements.

Comparative interactomics approaches are a power-
ful alternative approach for discovering modules and 
pathways across cellular networks. The central idea is 
that if a module is known in one organism, searching 
for homologues of its component proteins, along with 
conserved patterns of interactions, can yield informa-
tion in other organisms134–139. The Isorank algorithm 
is one such network alignment approach; it combines 
sequence similarity and network similarity constraints 
to construct and to solve an eigenvalue problem. It has 
been used to align and to analyse networks based on 
protein–protein interaction134,135, genetic interaction140 
and metabolic data141.

Interactome analysis of disease data sets. Some of the  
largest growing genomics data sets are arising in  
the context of human disease. These include genetic 
perturbations, such as mutations or copy number varia-
tions, observed in whole-genome or exome sequencing 
of afflicted individuals (for example, as observed in can-
cers) and variants identified as associated with disease 
through genome-wide association studies (GWASs), 
along with other high-throughput functional data (such 
as gene expression and DNA methylation data). The 
multifactorial nature of complex diseases suggests that 
although the genes underlying these diseases may differ 
among afflicted individuals, the pathways that are per-
turbed are likely to be shared, and thus proteins associ-
ated with the same disease have a tendency to interact142. 
Further, genes in loci identified by GWAS as being asso-
ciated with complex diseases have been found to be 
‘close’ within interaction networks135,143. Thus, network 
modularity can be leveraged to carry out disease gene 
prioritization and to uncover pathways associated with 
disease through a diverse set of methods144, including 
network flow145 and random walks146,147. In the context 
of analysing cancer genomes, approaches based on dif-
fusion148 and shortest paths149 (Hotnet and Netbox) have 
been applied to identify subnetworks enriched in recur-
rently mutated proteins across patients. These network 
approaches complement approaches for disease gene 
prioritization based on assessing the impact of mutations 
on protein function150–152.

Permutation-based approaches, such as DAPPLE, 
are a useful means for testing the modularity of genes 
that are putatively associated with a specific disease143. 
Here, candidate disease genes are evaluated for proxim-
ity with respect to each other in the network. To assess 
significance, these values are compared with those 
computed on randomized networks that are obtained 
by shuffling protein names in an interaction-degree-
preserving manner. Further, we note that network 
approaches may provide a powerful paradigm to recover 
potentially interesting associations in GWASs and other 
high-throughput experiments that are individually of 
marginal significance but are found in subnetworks 
enriched with other such genes and thus in aggregate 
suggest biological importance.

The molecular mechanisms that underlie disease 
can vary among affected individuals, and this can be 
evident at the mutational level or reflected in cellular 

measurements. Formulations based on extensions of the 
classic algorithmic problem of set cover have proved to 
be useful in considering this heterogeneity128,153,154. For 
example, in DEGAS, a set of dysregulated or mutated 
genes is determined for each individual, and the goal 
is to find a subnetwork in which each individual is 
‘covered’ by some number of genes in the subnetwork, 
where a gene covers a disease individual if the gene is 
either dysregulated or mutated in that disease155. Such 
an approach naturally models both the modularity and 
the heterogeneity in disease. Nevertheless, considera-
tion of patient heterogeneity represents a major chal-
lenge in further research in disease interactomics. A 
more complete discussion of the power of network biol-
ogy approaches for understanding disease and disease  
heterogeneity can be found elsewhere156.

Conclusion and future prospects
It is clear that we are moving into an era in which diverse 
high-throughput data — genomes, transcriptomes, pro-
teomes, interactomes and methylomes, among others 
— are routinely generated in individual laboratories. 
Understanding the algorithms underlying omics analy-
ses will result in their correct application in answering 
biological questions. Here we outline some areas where 
further algorithms are needed to aid the bench biologist.

The recently developed compressive genomics 
approach45 represents an important milestone for design-
ing compressive algorithmic frameworks that are adapta-
ble to large-scale genomic data. Introducing compressive 
techniques for next-generation sequencing read data sets 
and their quality scores remains a major challenge. Such 
techniques would allow, for example, the type of meta-
analyses across data sets that are routinely carried out 
using existing gene, protein and genome databases.

As transcriptomic data shifts from microarray to next-
generation sequencing, we will also need to develop tran-
scriptomic analysis methods to handle this new form of 
data. The experimental advantages of RNA-seq157 over 
microarrays — including, for example, the detection 
of transcript structure and alternative isoforms — add 
substantial complexity to these analyses. Further, high-
throughput sequencing provides ‘read-out’ for a range of 
functional genomics experiments (for example, chromatin  
immunoprecipitation followed by high-throughput 
sequencing (ChIP–seq)158 to detect protein–DNA inter-
actions, ultraviolet crosslinking and immunoprecipi-
tation followed by sequencing (CLIP–seq) and related 
techniques159–162 to detect protein–RNA interactions and 
ribosome profiling163 to determine protein translation), 
and the tremendous amounts of data produced from 
these experiments, along with their specific attributes, 
will be a challenge to existing analysis paradigms.

As high-throughput technologies continue to 
improve, omics measurements will be made across 
organisms, individuals, cell types and conditions and 
eventually at the level of individual cells. Much future 
work in integrative interactomics will focus on charac-
terizing the differences that distinguish individuals and 
cells from each other. These differences may reflect natu-
ral variation, differential functioning, disease pathology 
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