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[1] A new empirical algorithm is proposed to estimate surface chlorophyll a (Chl)
concentrations in the global ocean for Chl ≤ 0.25 mg m�3 (�78% of the global ocean area).
The algorithm is based on a color index (CI), defined as the difference between
remote-sensing reflectance (Rrs, sr

�1) in the green and a reference formed linearly
between Rrs in the blue and red. For low-Chl waters, in situ data showed a tighter (and
therefore better) relationship between CI and Chl than between traditional band ratios
and Chl, which was further validated using global data collected concurrently by
ship-borne and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate
Resolution Imaging Spectroradiometer (MODIS)/Aqua instruments. Model simulations
showed that for low-Chl waters, compared with the band-ratio algorithm, the CI-based
algorithm (CIA) was more tolerant to changes in chlorophyll-specific backscattering
coefficient and performed similarly for different relative contributions of
nonphytoplankton absorption. Simulations using existing atmospheric correction
approaches further demonstrated that the CIA was much less sensitive than band-ratio
algorithms to various errors induced by instrument noise and imperfect atmospheric
correction (including sun glint and whitecap corrections). Image and time series analyses
of SeaWiFS and MODIS/Aqua data also showed improved performance in terms of
reduced image noise, more coherent spatial and temporal patterns, and better consistency
between the two sensors. The reduction in noise and other errors is particularly useful to
improve the detection of various ocean features such as eddies. Preliminary tests over
Medium-Resolution Imaging Spectrometer and Coastal Zone Color Scanner data indicate
that the new approach should be generally applicable to all past, current, and future ocean
color instruments.

Citation: Hu, C., Z. Lee, and B. Franz (2012), Chlorophyll a algorithms for oligotrophic oceans: A novel approach based on
three-band reflectance difference, J. Geophys. Res., 117, C01011, doi:10.1029/2011JC007395.

1. Introduction

[2] Over the past half century, algorithms to invert ocean
color (i.e., spectral radiance or reflectance of the surface
ocean) to phytoplankton chlorophyll a (Chl) concentrations
(in mg m�3) have evolved from simple empirical regressions
[Gordon and Morel, 1983] to semianalytical inversions
based on radiative transfer theory (Sathyendranath et al.
[1989], Carder et al. [1999], Maritorena et al. [2002], and
others). While each of these approaches has its own advan-
tages and disadvantages (and thus applicability range), an
algorithm based on a spectral ratio of remote-sensing reflec-
tance (Rrs, sr

�1) historically has been used as the default
algorithm formulation to produce global chlorophyll-a

products from measurements made by satellite instruments.
These include the Coastal Zone Color Scanner (CZCS;
1978–1986), the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS; 1997–2010), and the Moderate Resolution
Imaging Spectroradiometer (MODIS; 1999 to the present for
the Terra satellite and 2002 to the present for the Aqua
satellite). The current default Chl algorithm for SeaWiFS and
MODIS is based on the OCx form of O’Reilly et al. [2000],
with coefficients derived using in situ data from the NASA
bio-Optical Marine Algorithm Data set (NOMAD) version 2
(http://oceancolor.gsfc.nasa.gov/REPROCESSING/R2009/
ocv6/). The default SeaWiFS algorithm is referred to as OC4
in this paper. Correspondingly, many large-scale studies of
ocean carbon cycles and biogeochemistry that utilized sat-
ellite ocean color data, from regional and basin to global
scale, have used the OC4 data products [e.g., Gregg et al.,
2005; Behrenfeld et al., 2006; Yoder and Kennelly, 2006;
Polovina et al., 2008], leading to documented changes in
ChlOC4 and primary productivity at various spatial/temporal
scales and connections to climate variability.
[3] An early review on the history of the band-ratio

empirical algorithms, as well as their advantages and

1College of Marine Science, University of South Florida, St. Petersburg,
Florida, USA.

2Department of Environmental, Earth and Ocean Sciences, University
of Massachusetts, Boston, Massachusetts, USA.

3NASA GSFC, Greenbelt, Maryland, USA.

Copyright 2012 by the American Geophysical Union.
0148-0227/12/2011JC007395

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C01011, doi:10.1029/2011JC007395, 2012

C01011 1 of 25

http://dx.doi.org/10.1029/2011JC007395


disadvantages, was provided by Gordon and Morel [1983]
and recently revisited by Dierssen [2010]. Briefly, the
most recent OC4v6 algorithm evolved from its predecessors
in the 1970s and 1980s [Clarke et al., 1970; Arvesen et al.,
1973; Hovis and Leung, 1977; Clark et al., 1980; Gordon
and Clark, 1980; Morel, 1980], when the radiance ratio of
blue and green wavelengths was recognized to correlate well
with surface Chl. The underlying assumption is that the
relative changes between the blue and green bands are pri-
marily driven by changes in phytoplankton and their direct
degradation products (i.e., the traditional case I scenario [see
Morel and Prieur, 1977]), and the latter can therefore be
inferred from the former. Indeed, despite the various studies
showing the algorithm artifacts in non-case I (i.e., case II)
waters (e.g., Dierssen et al. [2002], Hu et al. [2003],
Odriozola et al. [2007], and others), global validation efforts
of the SeaWiFS ChlOC4 data products proved that for most
open ocean waters, the algorithm performed well, with
RMS differences from ship-based Chl (after logarithmic
transformation) of 0.2–0.3 without significant bias [Gregg
and Casey, 2004; McClain et al., 2004a; McClain, 2009].
Agreement/disagreement varied among different ocean
basins because the same regression coefficients, determined
from the global data set optimization, were applied univer-
sally [Gregg and Casey, 2004]. To address these regional
differences, various band combinations and regression coef-
ficients were developed for different water types [e.g., Kahru
and Mitchell, 1999;McKee et al., 2007;Mitchell and Kahru,
2009], with similar band-ratio forms.

[4] All previous global-scale studies used spatially and
temporally composited data (e.g., monthly composites at
reduced resolution) to reduce data volume and fill in data
gaps due to cloud cover and other measurement/algorithm
artifacts. Chl data product errors at original spatial and
temporal resolutions are smoothed and smeared in these
higher-level data products, thus complicating the propaga-
tion of errors to trend/variability analyses at global or
regional scales. These errors are particularly evident at low
concentrations (Chl < 0.1 mg m�3). Figure 1a shows a typ-
ical example of the SeaWiFS global area coverage (GAC)
Level-2 Chl data product for the Sargasso Sea, an oligotro-
phic ocean gyre in the North Atlantic. Due to a variety of
reasons (see details below), the image shows patchiness and
speckle noise (pixelization) and is not spatially coherent.
Note that all nonzero Chl values in this image are regarded
as acceptable quality and used in composing the higher-
level (i.e., lower spatial and temporal resolution) products,
because all low-quality data, as defined by the various quality
flags, are already discarded. The image was selected rather
arbitrarily for demonstration purposes, and similar problems
could be visualized in almost every Level-2 GAC image.
Clearly, these issues need to be addressed in order to under-
stand how they may propagate to higher-level products to
affect the large-scale trend/variability analyses.
[5] Recently, in response to the Deepwater Horizon

(DWH) oil spill disaster in the northeastern Gulf of Mexico
and to derive spatially coherent and temporally consistent
ocean color patterns from satellite images contaminated by

Figure 1. SeaWiFS Level-2 GAC data products at 4 km resolution on 20 February 1998 over the
Sargasso Sea (about 1800 � 2640 km centered at 25.5°N, 54.8°W). (a) Chl derived from the default
OC4v6 algorithm (ChlOC4). (b) Chl derived from a new CI-based algorithm (ChlCI; see text for details).
(c) Aerosol optical thickness at 865 nm (t_865, dimensionless). (d) Remote-sensing reflectance at
555 nm (Rrs(555), �103 sr�1). All suspicious data, as defined by the various Level-2 flags, have already
been removed (black color). Note the specking noise (white circles) and patchiness (red circles) shown in
Figure 1a.
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severe sun glint, a new color index (CI) was developed for
satellite ocean color observations [Hu, 2011]. Instead of
using a blue-green band ratio as the independent variable,
the CI is calculated as the difference between the green-
band reflectance and a reference formed linearly by the blue
and red bands. This is similar to the design of the MODIS
fluorescence line height [Letelier and Abott, 1996] and
Medium-Resolution Imaging Spectrometer (MERIS) maxi-
mal chlorophyll index [Gower et al., 2005], except that the
bands are shifted to blue-green-red. Hu [2009] used a similar
form to detect and quantify the reflectance peak in the
MODIS 859 nm band and proved that the floating algae
index (FAI), derived using the 645-859-1240 band combina-
tion, was much less sensitive to variable observing conditions
(aerosols, sun glint, thin clouds, solar/viewing geometry)
than band-ratio algorithms. The MODIS CI appears to be
relatively insensitive to residual errors due to imperfect
empirical glint correction, and in glint-free areas, it is also
well correlated with MODIS band-ratio Chl [Hu, 2011],
suggesting that a new Chl algorithm might be developed
to remove residual atmosphere correction-related errors and
image noise.
[6] Inspired by these recent works, a new empirical algo-

rithm to retrieve Chl using the CI as the independent variable
is developed and validated in this paper. Using data collected
primarily by both SeaWiFS and MODIS/Aqua, as well as
other satellite instruments, we evaluate the performance of
such a band-difference algorithm (i.e., the CI algorithm or
CIA) compared with the OCx band-ratio algorithms. We
demonstrate and argue that because the CI is much more
tolerant than the band ratio to various perturbations in sensor
hardware and data processing (e.g., instrument noise, resid-
ual errors in atmospheric correction, whitecap and sun glint
corrections, stray light contamination), and also more toler-
ant to perturbations of Chl-independent particle backscatter-
ing from the water column, the CIA is superior to band-ratio
algorithms in deriving a more consistent and accurate Chl
climate data record for most oligotrophic oceans.
[7] This paper is arranged as follows. The principles to

“measure” Chl from space, although found in the refereed
literature, are briefly introduced for the reader’s convenience.
The in situ and satellite data used to develop and validate the
new algorithm are then described. Following that, the new
Chl algorithm (CIA) is described and validated for SeaWiFS
and MODIS/Aqua. Its sensitivity to errors and perturbations,
compared with the OC4 algorithm, is analyzed in detail and
further demonstrated using satellite measurements. Sample
time series at several arbitrarily selected oligotrophic ocean
sites as well as from global-scale data are used to evaluate the
performance of the new algorithm. Finally, we discuss the
new algorithm’s applicability to other satellite instruments
such as MERIS and CZCS and discuss its potential to
improve data quality, time series and cross-sensor consis-
tency, and image quality in feature detection.

2. Principles to “Measure” Chl From Space

[8] A multiband ocean-color satellite instrument measures
the top-of-atmosphere radiance or reflectance in several
spectral bands covering the visible to the near-infrared
domain. On SeaWiFS, the spectral bands are centered at
l = 412, 443, 490, 510, 555, 670, 765, and 865 nm. On

MODIS/Aqua, they are centered at l = 412, 443, 488, 531,
547, 667, 678, 748, and 869 nm. After radiometric calibra-
tion (including in-orbit vicarious calibration [Franz et al.,
2007]) the calibrated at-sensor reflectance (rt(l)), after
accounting for the effects of ozone and other gaseous
absorption, is used to derive the at-sea remote-sensing
reflectance (Rrs) [Gordon, 1997]. With some simplifications,
this can be expressed as

rt lð Þ ¼ rr lð Þ þ rar lð Þ þ t lð Þrwc lð Þ þ T lð Þrg lð Þ
þ pt lð Þt0 lð ÞRrs lð Þ; ð1Þ

where rr is that due to Rayleigh scattering; rar is that due to
aerosol scattering and aerosol-Rayleigh interactions; rwc is
the whitecap reflectance; rg is the sun-glint reflectance; T
and t are the direct and diffuse transmittance from the target
(pixel of the imagery) to the sensor (satellite), respectively;
and t0 is the diffuse transmittance from the sun to the target.
[9] Deriving Rrs(l) from rt(l) is through a sophisticated

atmospheric correction, which uses lookup tables for aerosol
and molecular properties [Gordon and Wang, 1994a, 1994b;
Ahmad et al., 2010; Bailey et al., 2010] after removing
contributions from whitecaps [Frouin et al., 1996] and sun
glint [Wang and Bailey, 2001]. The retrieved Rrs(l) is then
used as the input to an established bio-optical inversion
model to derive Chl. For the OC4 algorithm applied to
SeaWiFS, where “4” stands for four bands, Chl is derived as
[O’Reilly et al., 2000]

ChlOC4 ¼ 10 y

y ¼ a0 þ a1cþ a2c2 þ a3c3 þ a4c4

c ¼ log10 Rð Þ and R ¼ max Rrs 443; 490; 510ð Þð Þ=Rrs 555ð Þ;
ð2Þ

where a0 – a4 are the empirical regression coefficients, for
which the current values (version 6) are 0.3272, �2.9940,
2.7218, �1.2259, and �0.5683, respectively. For the OC3
algorithm applied to MODIS, R is defined as max(Rrs(443,
488))/Rrs(547), with regression coefficients adjusted to rep-
resent the best fit between R and Chl.
[10] The algorithm details and their performance at global

and regional scales can be found in the published literature
as well as in online documents (http://oceancolor.gsfc.nasa.
gov/REPROCESSING/R2009/ocv6/).

3. Data Sources Used in This Study

[11] In situ data were obtained from the NASA SeaWiFS
Bio-optical Archive and Storage System (SeaBASS) archive,
which is a database of measurements collected by many
research groups in order to develop and validate satellite
ocean-color algorithms. The NOMAD data set, described by
Werdell and Bailey [2005], is a subset of SeaBASS specifi-
cally compiled for bio-optical algorithm development, as it
contains coincident measurements of Chl, Rrs(l), and other
data collected simultaneously in the global oceans.
[12] Like the current OC4 algorithm, the data set used to

develop the CIA was taken from NOMAD version 2, cov-
ering a period of 1991–2007 and containing 4459 data
records. Similar to Morel et al. [2007a], the NOMAD data
used in the present study for algorithm development are
those with Chl determined via high-performance liquid
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chromatography (HPLC) because (1) for most concentra-
tions, HPLC and fluorometric measurements agree well
[Werdell and Bailey, 2005, Figure 6]; (2) for low con-
centrations, Chl determined from fluorometric methods
often suffer from contaminations by chlorophyll b and
chlorophyll c, as demonstrated from data collected in the
Southern Ocean [Marrari et al., 2006; Dierssen, 2010]; and
(3) the focus of this work is on clear water with low con-
centrations, and the NOMAD data sets contain more HPLC
than fluorometric measurements for extremely clear waters
(Chl < 0.05 mg m�3). Furthermore, we applied the following
criteria to select data for the oligotrophic oceans: Rrs(l) >
0.0 sr�1, Chl > 0.0 mg m�3, bottom depth >30.0 m, and
latitude between 60°N and 60°S. A total of 136 data records
were obtained.
[13] To evaluate the algorithm performance when applied

to satellite data, in situ data were also obtained from the
SeaBASS archive through online query. The following cri-
teria were used to search for the in situ-satellite matching
pairs: bottom depth >30 m; solar zenith angle <70°; satellite
zenith angle <56°; time difference between satellite and in
situ measurements <3 h; satellite Chl variance (standard
deviation divided by mean) from the 3� 3 pixels centered at
the in situ stations <15%; difference between modeled and
measured surface irradiance <100%; wind speed <35 m s�1.
For SeaWiFS, a total of 1424 matching pairs were obtained
for 1998–2010. For MODIS/Aqua, a total of 330 matching
pairs were obtained for 2002–2010.
[14] The online query also resulted in the satellite Level-2

computer file names corresponding to the matching pairs.
These Level-2 data products were derived by the NASA
Ocean Biology Processing Group using the most recent
updates in algorithms and instrument calibration (Reproces-
sing 2010.0, SeaDAS6.1). The data products include ChlOC4,
aerosol optical thickness at 865 nm (t_865), and Rrs(l).
Rrs(l) data extracted from the Level-2 files were used as the
input to derive ChlCI (Chl from the CI algorithm) and com-
pared with those determined from the in situ measurements.

[15] To evaluate algorithm performance in constructing
time series, SeaWiFS Level-2 data between 1998 and 2010
covering two oligotrophic gyres, namely, in the Sargasso
Sea (15–35°N, 60–40°W) and in the eastern South Pacific
Gyre (20–40°S, 120–100°W), were obtained from the NASA
Goddard Space Flight Center. For cross-sensor consistency
evaluations, SeaWiFS and MODIS/Aqua Level-3 global
daily data for 2006 were used. Some Level-2 data files from
MODIS/Aqua, MERIS, and CZCS covering the western
North Atlantic Sea were also used for algorithm evaluation.

4. The New Empirical Chl Algorithm

[16] Similar to the MODIS CI derived from the Rayleigh-
corrected reflectance [Hu, 2011], the Rrs-based SeaWiFS CI
is defined as the relative height of Rrs(555) from a back-
ground, i.e., difference between Rrs(555) and a baseline
formed linearly between Rrs(443) and Rrs(670) (Figure 2):

CI ¼ Rrs 555ð Þ – Rrs 443ð Þ þ 555–443ð Þ= 670–443ð Þ* Rrs 670ð Þ – Rrs 443ð Þð Þ½ �;
which is equivalent to CI ≈ Rrs 555ð Þ – 0:5 Rrs 443ð Þ þ Rrs 670ð Þð Þ:

ð3Þ
[17] By this definition, for most clear ocean waters, CI is

negative. Because for most clear waters Rrs(670) is negligi-
ble (see the “clear water” concept described by Gordon and
Clark [1981] and revisited by Morel and Maritorena
[2001]), CI is basically a weighted relative difference
between Rrs(443) and Rrs(555). Just as a ratio between the
two is related to Chl, since Rrs(555) is relatively stable but
Rrs(443) is sensitive to Chl changes for clear waters [Gordon
and Morel, 1983], a difference between the two should also
be related to Chl, and this forms the basis of the new Chl
algorithm (the theoretical basis of this algorithm is provided
in section 6.1 below). Indeed, Figure 2 shows that with
increasing Chl, the magnitude of CI decreases monotoni-
cally. The added band at 670 nm has a great advantage in
compensating various errors in atmospheric correction and
other corrections when the algorithm is applied to satellite
data (see below).
[18] Using the NOMAD data set, the relationships

between band-ratio R and Chl (equation (2)) and between CI
and Chl are shown in Figures 3a and 3b, respectively, for
data collected from the 136 qualified stations. Also overlaid
on Figure 3a is the OC4v6 prediction (Figure 3a, solid line),
which shows that the globally optimized regression rela-
tionship fits well with the low Chl values. If a similar band-
ratio form is developed using the low-concentration stations
only (Figure 3a, green dots), slightly better performance can
be achieved as measured by the statistics (Table 1), but at the
price of sacrificing the intermediate values (Figure 3a, red
line) because the numerical fit tends to plateau for Chl
around 0.2 and 0.3 mg m�3.
[19] The statistical measure of the algorithm performance

is listed in Table 1. Note that when evaluating the relative
difference between the two data sets, x and y (in this case,
one is the in situ measurement (x) and the other is the
algorithm prediction (y)), RMS difference (or error) is typi-
cally evaluated using the form of (y – x)/x. However, when
one data set contains substantial errors, the (y – x)/x ratio
may be extremely large and therefore creates biased esti-
mates for the relative difference. For this reason, an unbiased

Figure 2. Illustration of the CI algorithm concept. When
Chl increases from 0.02 to 0.33 mg m�3, Rrs(443) decreases
while Rrs(555) and Rrs(670) remain relatively stable. Thus,
the distance from Rrs(555) to the linear baseline between
Rrs(443) and Rrs(670) (dotted line in the figure), defined as
the CI, is highly correlated with Chl. This is the same princi-
ple as using the Rrs(443)/Rrs(555) ratio to relate to Chl.
These in situ data are from the NOMAD data set.
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RMS was also estimated using (y � x)/(0.5x + 0.5y) [Hooker
et al., 2002]. And this evaluation was also used for com-
parison between satellite and in situ Chl data below. When
the Chl data cover a large dynamic range, they tend to
be lognormal [Campbell, 1995]. Thus, R2 between the log-
transformed data was also estimated and presented in Table 1.
[20] Figure 3b shows that for low Chl values, there is a

strong relationship between CI and Chl, confirming the
visual interpretation of Figure 2. Nonlinear regression for
CI ≤ �0.0005 resulted in a coefficient of determination (R2)
of 0.95 (n = 50) and a RMS difference of 16.52% between
the CI-predicted Chl (ChlCI) and the measured Chl:

ChlCI ¼ 10–0:4909þ191:6590*CI CI ≤ � 0:0005 sr�1
� �

: ð4Þ

[21] In comparison, for the same data points correspond-
ing to CI ≤ �0.0005 sr�1 (n = 50), the OC4v6-predicated
Chl showed a lower coefficient of determination (R2 = 0.85,
n = 50) and higher RMS difference from the in situ Chl
(RMS = 34.87%). Even when new coefficients from these
low-Chl data points were tuned to result in a better fit
between band-ratio R and Chl, RMS difference was reduced
to 22.95% but still higher than the CI predictions (Table 1).

Indeed, the contrast between the different data scattering for
ChlOC4 (Figure 3a) and for ChlCI (Figure 3b) is apparent.
From this regression alone, the CIA appears to perform better
than the OC4v6 for low concentrations (Chl ≤ 0.25 mg m�3).
Note that although the number of data points used in the
regression is limited (n = 50), they were collected from dif-
ferent ocean basins (Figure 3a, inset) covering the Pacific,
Atlantic, Gulf of Mexico, and Southern oceans. Thus, the
CIA might be applicable to most oligotrophic waters.

Table 1. Chl Algorithm Performance for CI <�0.0005 sr�1 Using
the NOMAD Data Seta

Algorithm RMS URMS
Mean
Ratio

Median
Ratio

R2

(Linear)
R2

(Log) N

OC4v6 34.9% 28.2% 1.11 1.08 0.73 0.85 50
CI 16.5% 16.2% 1.01 1.01 0.78 0.95 50
OClow 23.0% 22.3% 1.03 1.05 0.73 0.85 50

aOClow represents a local polynomial fit between the log-transformed
band ratio and Chl for low concentrations only (CI < �0.0005; Figure 3a,
red line), which shows improved performance than the globally tuned
OC4v6. The regression equation is ChlOC_low = 10.y and y = 0.3906 –
1.5479c + 3.2125c2 � 3.1073c3. URMS is “unbiased” RMS (see text for
details).

Figure 3. Relationship between in situ Chl and (a) reflectance ratio R and (b) CI. The highlighted points
emphasize those corresponding to CI ≤ �0.0005, where the corresponding data collection locations are
shown in the inset map. Note that the minimum Chl in this data set is about 0.02 mg m�3. In Figure 3a,
the RMS error is estimated between measured and OC4v6-predicted Chl. If a best fit from all data points
for CI < �0.0005 sr�1 is used, RMS error is reduced to 22.95%. Statistics are presented in Table 1.
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[22] Figure 3b also shows that the CIA may only be
applicable for low concentrations, because the relationship
quickly falls apart for CI > 0.0005 sr�1, corresponding to
ChlCI � 0.4 mg m�3. The reason why the CIA does not work
well above this concentration is demonstrated in sections 6.1
and 6.2 using radiative transfer modeling. Indeed, above this
concentration, the CIA tends to underestimate Chl signifi-
cantly (Figure 3b), where the original OC4v6 should be used
instead. For intermediate concentrations, a mixture between
the two algorithms may be used to assure image smoothness
when the algorithm switches from one to another. For such
practical considerations, the upper bound of 0.4 mg m�3 was
lowered to 0.3 mg m�3 (after trial and error with image and
histogram analyses to assure a smooth transition) so that
CIA works even at this upper bound. Thus, the new global
product of chlorophyll (ChlOCI) is defined as follows:

ChlOCI ¼ ChlCI for ChlCI ≤ 0:25 mg m�3
� �

ChlOC4 for ChlCI > 0:3 mg m�3
� �

a� ChlOC4 þ b� ChlCI for 0:25 < ChlCI ≤ 0:3 mg m�3
� �

;

ð5Þ

where a = (ChlCI – 0.25)/(0.3 � 0.25) and b = (0.3 – ChlCI)/
(0.3 – 0.25). Because such derived Chl is from two algo-
rithms (OC4 and CIA), we use the term ChlOCI hereafter
to represent the merged product. Note that although the
algorithm blending for Chl between 0.25 and 0.3 mg m�3

might create some artifacts in image smoothness around the
lower and upper bounds (0.25 and 0.3), histogram analyses

of the entire Chl range from SeaWiFS data did not show
any noticeable artifacts in data continuity. On average,
SeaWiFS monthly data between 1998 and 2010 showed that
77.8 � 1.0% of the global ocean had Chl ≤ 0.25 mg m�3

and 5.06 � 0.43% of the global ocean had Chl between
0.25 and 0.3 mg m�3.

5. Validation of the New Chl Algorithm

[23] The CIA was implemented to derive ChlOCI from
SeaWiFS and MODIS/Aqua Level-2 Rrs(l) data where
concurrent in situ Chl were found (see data source). Because
the MODIS green band is centered at 547 nm instead of
555 nm for SeaWiFS, MODIS Rrs(547) was converted to
Rrs(555) by multiplying 0.93 according to data regression
from in situ measurements in the South Pacific (not shown).
Figure 4 shows the comparison between in situ Chl and
SeaWiFS ChlOCI and between in situ Chl and SeaWiFS
ChlOC4. Similarly, Figure 5 shows the comparison between
in situ Chl and MODIS/Aqua ChlOCI and between in situ
Chl and MODIS/Aqua ChlOC3. For high concentrations
(ChlOCI > 0.3 mg m�3), the data points between the two

Figure 4. Comparison between in situ Chl and satellite-
based Chl for SeaWiFS. The satellite Chl was derived from
both the OC4v6 algorithm (open circles) and Ocean Color
Index (OCI) algorithm (dots). Note that for Chl > 0.3 mg
m�3, the results from the two algorithms were forced to be
identical (equation (5)). The locations of the in situ measure-
ments for Chl ≤ 0.25 mg m�3 are shown in the correspond-
ing map. The comparison statistics for low concentration
(Chl ≤ 0.25) are listed in Table 2.

Figure 5. Comparison between in situ Chl and satellite-
based Chl for MODIS/Aqua. The satellite Chl was derived
from both the OC3 algorithm (open circles) and OCI algo-
rithm (dots). For algorithm consistency, MODIS Rrs(547)
was converted to Rrs(555) by Rrs(555) = 0.93 Rrs(547)
according to in situ data collected from the South Pacific
(not shown here). Note that for Chl > 0.3 mg m�3, the
results from the two algorithms were forced to be identical
(equation (5)). The locations of the in situ measurements
for Chl ≤ 0.25 mg m�3 are shown in the corresponding
map. The comparison statistics for low concentration (Chl ≤
0.25 mg m�3) are listed in Table 3.
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algorithms were forced to be identical (equation (5)). For
low concentrations (Chl ≤ 0.25 mg m�3), the CI algorithm
outperforms the OC4 (SeaWiFS; Table 2) and OC3
(MODIS/Aqua; Table 3) algorithms by all measures, from
RMS difference, R2, to mean and median ratios. Note that
although only a limited number of data points were available
for low concentrations, a slight improvement in algorithm
performance may lead to larger difference in image analysis,
because the majority of the ocean is oligotrophic. Indeed,
analysis of the 13 year SeaWiFS monthly data between 1998
and 2010 indicated that 77.8 � 1.0% of the global ocean
waters had surface Chl ≤ 0.25 mg m�3 and 82.9 � 1.4% had
surface Chl ≤ 0.3 mg m�3. Thus, such a new algorithm
might have profound effects on global- and basin-scale
studies. Note that if a local OCx algorithm is developed for
low concentrations only (Figure 3a, red line), its perfor-
mance for SeaWiFS data will also improve over the globally
tuned OC4 algorithm in statistical measures and is also
slightly better than the CIA in terms of median ratio. How-

ever, its R2 value is lower than that of the CIA, especially
when a linear form is used. Global validation results using
this local OCx algorithm showed plateaued performance
around 0.2–0.3 mg m�3. More importantly, because it takes
a similar band-ratio form, it suffers from the same problems
as encountered by the OCx algorithm for low concentrations
(see below). Thus, it is listed in Table 2 for demonstration
only and was not implemented for MODIS/Aqua or Sea-
WiFS global data processing.
[24] Because only limited in situ data are available to eval-

uate algorithm performance at low concentrations (e.g., there is
no in situ Chl < 0.02 mg m�3), below we take a theoretical
approach to compare the sensitivity of ChlCI and ChlOC4 algo-
rithms to various perturbations, including sensor noise, atmo-
spheric correction, and noncovarying in-water constituents.

6. Algorithm Theoretical Basis and Its Sensitivity
to Simulated and Realistic Perturbations

6.1. Algorithm Theoretical Basis: Why and When
It Works

[25] Assuming that the influence of measurement geome-
try (i.e., bidirectional reflectance effects) on Rrs(l) can be

corrected [Morel and Gentili, 1993; Lee et al., 2011], Rrs(l)
is entirely determined by the inherent optical properties
(IOPs) through primarily spectral absorption and backscat-
tering by the various in-water optically active constituents
(OACs). These include water molecules, phytoplankton,
colored dissolved organic matter (CDOM; or yellow sub-
stance), and detrital particles. In high-wind seas, the OACs
may also include bubbles induced by wave breaking, which
may increase the backscattering properties significantly
[Zhang et al., 1998]. Following Lee et al. [2011], Rrs(l) can
be expressed using spectral absorption (a) and backscatter-
ing (bb) coefficients as

Rrs l;Wð Þ ¼ Gw
0 Wð Þ þ Gw

1 Wð Þ bbw lð Þ
k lð Þ

� �
bbw lð Þ
k lð Þ

þ Gp
0 Wð Þ þ Gp

1 Wð Þ bbp lð Þ
k lð Þ

� �
bbp lð Þ
k lð Þ ; ð6Þ

where the phase-function effects of molecular and particu-
late scatterings are separated explicitly. In equation (6), k =
a + bb, while W represents the solar/viewing geometry.
A simplified form has often been used in the literature for
low backscattering waters

Rrs lð Þ ¼ G
bbw lð Þ þ bbp lð Þ

a lð Þ ; ð7Þ

where G is a model parameter that varies with solar/viewing
geometry and scattering phase function and bbw and bbp are
backscattering coefficients of water molecules (constant)
and particles (variable), respectively.
[26] Because Rrs(670) is generally negligible for oligotro-

phic waters, CI from equation (3) can be approximated as

[27] Furthermore, because bbw(443) ≈ 2.6 bbw(555)
[Morel, 1974] and bbp(443) ≈1.6 bbp(555) (assuming a
spectral slope of 2), equation (8) can be simplified as

CI ≈� G
a 555ð Þ � 0:8a 443ð Þð Þbbw 443ð Þ þ a 555ð Þ � 1:3a 443ð Þð Þbbp 443ð Þ

2a 443ð Þa 555ð Þ

¼ �G
Dwater þDparticles

2a 443ð Þa 555ð Þ : ð9Þ

Table 2. Chl Algorithm Performance From SeaWiFS Measure-
ments for Chl ≤ 0.25 mg m�3, as Gauged by in Situ Chla

Algorithm RMS URMS
Mean
Ratio

Median
Ratio MRE

R2

(Linear)
R2

(Log) N

OC4v6 535.8% 54.2% 1.79 1.19 41.5% 0.01 0.33 357
CI 91.8% 47.2% 1.40 1.16 36.8% 0.31 0.39 357
OClow 92.9% 45.6% 1.33 1.08 34.7% 0.20 0.36 357

aSeaWiFS-derived Rrs(l) were used as the input of all algorithms. OClow

represents a local band-ratio algorithm for low concentrations only (CI <
�0.0005 sr�1; Figure 3a, red line). URMS, “unbiased” RMS (see text for
details); MRE, mean relative error after converting negative errors to
positive.

CI ≈ G
2a 443ð Þbbw 555ð Þ � a 555ð Þbbw 443ð Þð Þ þ 2a 443ð Þbbp 555ð Þ � a 555ð Þbbp 443ð Þ� �

2a 443ð Þa 555ð Þ : ð8Þ

Table 3. Chl Algorithm Performance From MODIS/Aqua Mea-
surements for Chl ≤ 0.25 mg m�3, as Gauged by in Situ Chla

Algorithm RMS URMS
Mean
Ratio

Median
Ratio MRE

R2

(Linear)
R2

(Log) N

OC3 77.7% 44.2% 1.24 1.05 32.0% 0.42 0.66 63
CI 43.9% 32.7% 1.15 1.04 25.4% 0.62 0.71 63

aMODIS/Aqua Rrs(l) were used as the input of all algorithms. URMS,
“unbiased” RMS (see text for details); MRE, mean relative error after
converting negative errors to positive.
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[28] Figure 6 shows the two backscattering-related terms
(Dwater and Dparticles, �1000) for Chl ranging between 0.02
and 1.0 mg m�3, estimated using the Morel and Maritorena
[2001] case I model. It shows that for Chl < �0.4 mg m�3,
∣Dwater∣ overweighs ∣Dparticles∣. This is due to two reasons:
(1) low bbp(443) relative to bbw(443) (e.g., for Chl = 0.1 mg
m�3, bbw(443) = 0.0025 m�1, bbp(443) �0.0015 m�1);
and (2) when Chl increases, the corresponding increase
in bbp(443) is compensated by the decrease in (a(555)�1.3
a(443)). These results suggest that for Chl < 0.4 mg m�3,
equation (9) can be further simplified to

CI / �G
bbw 443ð Þ
2a 443ð Þ ; ð10Þ

which is equivalent to the band ratio

R ¼ Rrs 443ð Þ
Rrs 555ð Þ ≈

bbw 443ð Þ þ bbp 443ð Þ
bbw 555ð Þ þ bbp 555ð Þ

a 555ð Þ
a 443ð Þ : ð11Þ

In other words, both CI and R are inversely related to a(443).
Because for oligotrophic waters a(443) is primarily a func-
tion of Chl (assuming CDOM covaries with Chl), CI in
equation (10) can be expressed as

CI / �G
bbw 443ð Þ
2f Chlð Þ : ð12Þ

[29] This simplified equation, based on several assump-
tions, explains why Chl can be derived from CI at low
concentrations. Below, we use more realistic simulations to
demonstrate this concept.

6.2. Sensitivity to Perturbations From In-Water
Constituents

[30] The empirical Chl algorithms (either OC4 or CIA) are
based on the assumption that Rrs(l) is mainly determined
by phytoplankton and its direct degradation product (the
so-called “Case I” waters [Morel and Prieur, 1977]), or at
least other OACs such as CDOM and detrital particles cov-
ary with phytoplankton. For low concentrations, both band
ratio (R) and CI are inversely related to the total absorption

coefficient (a(443), equations (10) and (11)), where the
contribution of phytoplankton and CDOM/detrital particles
to a(443) must covary in order to derive the former. There
has been substantial evidence that the OACs often do not
covary even for the open oceans [Loisel et al., 2002;
Dierssen, 2010], which may explain why a globally opti-
mized parameterization in OC4 may work well for one
ocean basin or one season but its performance can be much
worse for another [e.g., Gregg and Casey, 2004]. Thus, for
global applications, one measure to assess algorithm
robustness is to test its sensitivity to various scenarios where
OACs do not covary.
[31] For such a sensitivity analysis, the same approach of

Lee et al. [2010] to assess IOP algorithm uncertainty was
adapted here for both the OC4 and CIA. Synthetic data
(Rrs(l) derived from various IOP combinations) were used
to evaluate the impact of IOP variability on Chl retrieval
accuracy.
[32] Briefly, starting from equation (6), the geometric

parameters (G0
w(W), G1

w(W), G0
p(W), and G1

p(W); in sr�1) were
taken as (0.0604, 0.0406, 0.0402, 0.1310 sr�1) [Lee et al.,
2011]. The absorption and backscattering coefficients were
modeled as

a lð Þ ¼ aw lð Þ þ aph lð Þ þ adg lð Þ
bb lð Þ ¼ bbw lð Þ þ bbp lð Þ; ð13Þ

where aw(l) and bbw(l) are for water molecules and are
taken from Pope and Fry [1997] and Morel [1974], respec-
tively. The aph(l), adg(l), and bbp(l) are for phytoplankton
pigments, detrital particles and CDOM, and particulate
matter, respectively, and they are modeled as

aph lð Þ ¼ aph 440ð Þaþph lð Þ
adg lð Þ ¼ adg 440ð Þe�S l�440ð Þ

bbp lð Þ ¼ bbp 440ð Þ 440

l

� �h

:

ð14Þ

Here aph
+ (l) is aph(l) normalized to aph(440) and is taken

from the International Ocean-Colour Coordinating Group
(IOCCG) [2006] database. The dependence of adg(l) and
bbp(l) on Chl (or aph(440)) was defined as

adg 440ð Þ ¼ p1 aph 440ð Þ;
bbp 440ð Þ ¼ 0:015p2Chl0:62;

ð15Þ

where the exponent of 0.62 was taken from Gordon
and Morel [1983] and 0.015 is the backscattering/total-
scattering ratio [Sullivan and Twardowski, 2009].
[33] For each Chl value (corresponding to an aph(440)),

four parameters can be changed independently in modeling
Rrs(l), and Chl can be retrieved from the modeled Rrs(l)
with both OC4 and CIA (equations (2)–(5)) and compared
with the input Chl to produce a relative error estimate. These
four parameters include p1, p2, S, and h. Below, we show the
results of four scenarios.
6.2.1. Scenario 1: Both adg and bbp Vary Independently
From aph(440)
[34] The aph(440) was set to be 0.0028, 0.008, 0.012,

0.024, and 0.05 m�1, respectively, roughly corresponding to
Chl of 0.02, 0.05, 0.1, 0.3, and 1.0 mg m�3, respectively
[Bricaud et al., 1995]. The minimum aph(440) (0.0028 m�1)

Figure 6. Relationship between the two backscattering
terms in equation (9) with Chl. To show their relative mag-
nitudes, the absolute values (�1000) are shown here. Note
that for Chl ≤ 0.4 mg m�3, the water term dominates the
numerator of equation (9).
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is half of the minimum aph(440) in the IOCCG data set and
approximates the aph(440) values in the South Pacific Gyre
[Morel et al., 2007b; Lee et al., 2010]. For each aph(440)
(and its corresponding Chl), p1 varied from 0.4 to 2.0 with
a step of 0.1 (17 p1 values); p2 varied from 0.1 to 0.6 with a
step of 0.1 (6 p2 values); S varied from 0.013 to 0.019 with
a step of 0.002 (4 S values); and h was set to 0.5 and 1.5.
Thus, for each aph(440) (Chl), there are 816 sets of a&bb,
816 Rrs spectra, and 816 retrieved Chl values. The histo-
gram of the relative errors (relative to the mean results of
all retrievals) of the 816 retrieved Chl values from each
algorithm is shown in Figure 7a.
[35] Except for the high-concentration case (Chl = 1.0 mg

m�3), the performance of the two algorithms is similar. For
Chl-relative errors within �30% (Figure 7a, two dashed
lines), the percentages of data points for Chl = 0.02, 0.05,

0.1, and 0.3 mg m�3 are 62.0% (73.5%), 76.9% (72.5%),
80.3% (77.8%), and 79.5% (85.0%), respectively, for the
two algorithms (CIA in parentheses). Furthermore, the CIA
yielded less data points than OC4 for errors beyond �60%.
The percentage numbers for these large errors are 13.5%
(5.1%), 4.0% (1.6%), 4.7% (0.2%), and 4.7% (4.1%) for Chl
= 0.02, 0.05, 0.1, and 0.3 mg m�3, respectively (CIA in
parentheses). Clearly, CIA is comparable to (at least not
worse than) OC4 in its sensitivity to Chl-independent IOP
perturbations for the applicable range (Chl ≤ 0.3 mg m�3)
when all IOPs vary independently.
6.2.2. Scenario 2: Same as Scenario 1, but adg and bbp
Covary
[36] For each Chl (0.02, 0.1, and 0.3 mg m�3), 264 model

simulations were conducted, where adg slope varied from
0.013 to 0.019 nm�1 (step of 0.002), bbp slope varied from
0.5 to 1.5 (step of 0.2), bbp/Chl varied from 0.1 to 0.6 (step
of 0.05), and adg(440)/bbp(440) was forced to be 10 (i.e.,
they covaried). In these simulations adg(440)/aph(440)
ranged between 0.3 and 2.0, consistent with those found
from most natural waters. The sensitivities of the OC4 and
CI algorithms to these IOP changes are presented in
Figure 7b. For Chl-relative errors within �30% (Figure 7b,
two dashed lines), the percentages of data points for Chl =
0.02, 0.1, and 0.3 are 36.4% (85.2%), 62.1% (89.0%), and
56.8% (77.7%), respectively, for the two algorithms (CIA in
parentheses). Clearly, for low concentrations (Chl ≤ 0.3 mg
m�3), the CIA is less sensitive than OC4 to independent IOP
perturbations when adg and bbp covary.
6.2.3. Scenario 3: adg Varies Independently From
aph(440) but bbp Covaries With aph(440)
[37] For each aph(440), p2 was set to 0.45, h = 1.0, S =

0.016, but p1 was changed from 0.3 to 2.5 with a step of 0.1
(23 p1 values). Figure 8a shows that the relative errors in the
retrieved Chl from both algorithms change from negative to
positive with increasing adg/aph ratios, an expected result
where the increased CDOM or detrital particles were mis-
takenly regarded as Chl because they all strongly absorb the
blue light. For extremely low concentrations (Chl < 0.1),
errors from the CIA are slightly higher, but for higher con-
centrations, the errors approach those from the OC4 algo-
rithm. For the entire simulation range, the mean relative
errors (after converting negative to positive values) for Chl =
0.02, 0.05, 0.1, and 0.3 mg m�3 are 30.4% (30.6%), 23.2%
(30.3%), 23.4% (28.3%), and 22.5 (23.1%), respectively
(CIA in parentheses). For the extreme case of Chl = 1.0 mg
m�3, errors from the CIA are lower than those from the OC4
algorithm, especially when adg(440)/aph(440) is >2.0 or
<1.0. In general, for Chl ≤ 0.25 mg m�3 and the moderate
range of adg(440)/aph(440) (1.0–2.0), the retrieval errors
from the two algorithms are similar.
6.2.4. Scenario 4: bbp Varies Independently From
aph(440) but adg Covaries With aph(440)
[38] For each aph(440), p1 was set to 1.0, h = 1.0, S =

0.016, but p2 was changed from 0.1 to 0.6 with a step of 0.05
(11 p2 values). Figure 8b shows that for Chl < 0.3 mg m�3,
the CIA yielded much lower relative errors for all cases
regardless of the error sign. For the entire simulation range,
the mean relative errors (after converting negative to positive
values) for Chl = 0.02, 0.05, 0.1, and 0.3 mg m�3 are 17.4%
(9.0%), 11.6% (6.9%), 11.1% (4.8%), and 11.2% (4.3%),
respectively (CIA in parentheses). The errors from the CIA

Figure 7. Chl algorithm sensitivity to changes of detrital
particles and CDOM relative to phytoplankton. (a) Detrital
particles and CDOM do not covary, based on 816 model
simulations for each Chl value (equations (6) and (13)–
(15)). For Chl-relative errors within �30% (the two dashed
lines), the percentages of data points for Chl = 0.02, 0.05,
0.1, and 0.3 are 62.0% (73.5%), 76.9% (72.5%), 80.3%
(77.8%), and 79.5% (85.0%), respectively, for the two algo-
rithms (CI in the parentheses). Note that the performance of
CI for Chl = 1.0 mg m�3 is much worse than OC4. (b) Detri-
tal particles and CDOM covary (adg(440)/bbp(440) = 10.0,
adg(440)/aph(440) from 0.3 to 2.0, adg slope from 0.013 to
0.019 nm�1, bbp slope from 0.5 to 1.5, bbp/Chl from 0.1 to
0.6). For Chl-relative errors within �30% (the two dashed
lines), the percentages of data points for Chl = 0.02, 0.1,
and 0.3 are 36.4% (85.2%), 62.1% (89.0%), and 56.8%
(77.7%), respectively, for the two algorithms (CI in the
parentheses).
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change sign between 0.1 and 0.3 mg m�3. At Chl = 0.4 mg
m�3, the CIA errors approach those from the OC4. At Chl =
1.0 mg m�3, errors from the CIA are significantly higher
than those from the OC4. These results suggest that for Chl
< 0.4 mg m�3, the performance of the CIA is often signifi-
cantly better than the OC4 when bbp varies independently
from aph(440) (or Chl). The negative slope in Figure 8b for
the CIA with Chl ≤ 0.1 mg m�3 (i.e., errors change from
positive to negative with increasing bbp/Chl) has significant
implications for oligotrophic waters. For example, with
increasing detrital particles, the increased detrital absorption
will lead to overestimates in ChlCI (Figure 8a), while the
increased backscattering will lead to underestimates in ChlCI
(Figure 8b). Thus, these two effects will be partially com-
pensated for low concentrations when adg and bbp covary
(Figure 7b).
[39] The results above are based on simulated data sets,

some of which may not be realistic in nature. Indeed, on

large dynamic scales, the absorption IOPs often covary
[Morel, 2009], although their relative proportions in modu-
lating the Rrs(l) may change from one ocean basin to
another. For example, although the ratio of adg(440)/
aph(440) showed a weak seasonality in an oligotrophic ocean
site and there was an observable temporal lag between the
two absorption terms, they did show high correlations in the
temporal patterns [Hu et al., 2006]. In contrast to absorption
OACs, bbp relative to Chl may vary substantially in both
space and time [Loisel et al., 2002; Dierssen, 2010], where
the CIA should perform significantly better than the OC4
algorithm in the algorithm tolerance to independent bbp
changes for low-concentration waters.
[40] Overall, from these model-based simulations, we

believe that with error-free Rrs(l) as the input, the CIA
should perform at least equivalently to the OC4 algorithm
for Chl ≤ 0.3 mg m�3, if not better. These results are also
consistent with those shown in Figure 3, when in situ data
(assumed error free, but they certainly contained both mea-
surement and data reduction errors) were used to evaluate
algorithm performance, and with those shown in Figure 6.

6.3. Sensitivity to Digitization Noise and Atmospheric
Correction Errors

[41] The above simulations are based on the assumption
that the inputs of the algorithms, namely, the Rrs(l) data,
are error free. In practice, Rrs(l) derived from satellite
measurements may contain various errors from imperfect
radiometric calibration, instrument noise and digitization
round-off noise, imperfect atmospheric correction, residual
errors from whitecap and sun glint corrections, and stray
light contaminations (equation (1) and Figure 1).
[42] Assuming an error-free calibration and an error-free

atmospheric correction scheme, Hu et al. [2001] used model
simulations to evaluate the SeaWiFS data product uncer-
tainties originating from instrument and digitization noise
alone. They found that (1) errors in the retrieved Rrs(l) and
band-ratio Chl were primarily from noise-induced perturba-
tions in the atmospheric correction, which were propagated
and enlarged from the near-IR bands to the visible bands,
and (2) relative errors in the band-ratio Chl were more
prominent in both low (<0.1 mg m3) and high (>10 mg m3)
Chl ranges than in the intermediate Chl ranges.
[43] The same simulations were applied here to compare

relative errors in ChlOC4 and ChlCI due to digitization/noise.
Briefly, random noise at the level between �0.5d(l) and
0.5d(l) was added to rt(l) in equation (1), where d(l) is the
spectral remote-sensing reflectance corresponding to one
digital count in the individual band

rt′ lð Þ ¼ rt lð Þ þ noise: ð16Þ

rt(l) and r′t(l) were fed to the identical atmospheric cor-
rection and bio-optical inversion algorithms under various
observation conditions (aerosol type and optical thickness,
solar/viewing geometry), the derived Chl from the noise-free
rt(l) and noise-added r′t(l) were compared, and relative
error was assessed. Figures 9 and 10 show examples of the
simulation results. For 10,000 model runs of the given
aerosol information (maritime aerosol with relative humidity
of 90%) and solar/viewing geometry (scene center, solar
zenith angle qo = 60°), the errors in the retrieved Rrs(l) due

Figure 8. Chl algorithm sensitivity to (a) independent
changes of absorption of detrital particles and CDOM (adg)
relative to Chl and (b) independent changes of particular
backscattering (bbp) relative to Chl, based on model simula-
tions for each Chl value (equations (6) and (13)–(15)). Note
that in Figure 8b, the added simulation was for Chl =
0.4 (stars), when the errors in the CI retrievals are shown
to approach those of the OC4 retrievals. In Figure 8a, for
the entire simulation ranges, the mean relative errors (after
converting negative to positive values) for Chl = 0.02,
0.05, 0.1, and 0.3 mg m�3 are 30.4% (30.6%), 23.2%
(30.3%), 23.4% (28.3%), and 22.5 (23.1%), respectively
(CIA in the parentheses). In Figure 8b, the mean relative
errors are 17.4% (9.0%), 11.6% (6.9%), 11.1% (4.8%), and
11.2% (4.3%), respectively. Note that the performance of
CI for Chl = 1.0 mg m�3 is much worse than OC4.
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to digitization round-off and instrument noise alone are
presented in Figure 9. To first order, the errors are spectrally
linear (Figure 9a), and errors at 443 nm are roughly twice
those at 555 nm (Figure 9b). Because of the approximate
linearity, most of these errors were canceled in equation (3),
resulting in much smaller errors in the CI (Figure 9c). In
contrast, these same Rrs(l) errors can only be canceled to a
lesser degree in the band-ratio R (equation (2)), especially
when the ratio is significantly different from 2 (when the
ratio is �2, adding twice as much error in the numerator as
in the denominator will make the ratio unchanged). For the
oligotrophic oceans, Rrs(555) is small (the blue/green ratio R
may reach 8.0), then large errors in the blue/green ratio
could be resulted when Rrs(l) contains small, spectrally
linear perturbations. Thus, the different sensitivity of R and
CI to the digitization noise-induced errors leads to different
accuracy in the retrieved Chl (Figure 10). For the Chl range
considered here, while the relative errors in ChlOC4 increased

sharply with decreasing Chl, the errors in ChlCI remained
unchanged at a much lower level. Simulation results for
other aerosol and solar/viewing geometry were different
from those shown in Figures 9 and 10, but the general pat-
tern remained the same, i.e., relative errors in ChlOC4 were
always higher than in ChlCI for Chl < 0.4 mg mg�3, with
only the former varying with Chl.
[44] Clearly, for Chl < 0.4 mg m�3, ChlCI is much less

sensitive than ChlOC4 to digitization noise-induced errors for
SeaWiFS. In practice, the atmospheric correction scheme
implemented in SeaDAS has inherent errors to within
�0.002 in reflectance at 443 nm (trw443), which is the basis
for the 5% fidelity in the retrieved reflectance at 443 nm for
clear waters [Gordon and Wang, 1994a; Gordon, 1997]. The
�0.002 reflectance errors are equivalent to Rrs(443) errors of
approximately �0.002/p = �0.0006 sr�1, corresponding to
Rrs(555) errors of about �0.0003 sr�1. These additional
errors are comparable to those due to SeaWiFS digitization

Figure 9. Errors in Rrs(l) and CI induced by SeaWiFS digitization noise after applying the Gordon and
Wang [1994a] atmospheric correction. Most of the errors are due to the impact of the small noise on the
atmospheric correction bands in the near infrared, which extrapolate the atmospheric properties to the
visible [Hu et al., 2001]. (a and b) These errors are approximately linear to changing wavelengths and
can thus be corrected to first order by the CI algorithm (equation (3) and Figure 2), resulting in smaller
errors in CI (and ChlCI; Figure 10). (c) Errors in the retrieved CI, with model parameters annotated.
Results from other modeling scenarios are different, but the principles in reducing the noise-reduced
errors using the CI are the same.
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noise (Figures 9a and 9b) and are independent of instrument
sensitivity (i.e., they apply to all ocean color sensors
including SeaWiFS and MODIS/Aqua). Figure 11 shows
that ChlCI is nearly immune to such residual errors resulting
from atmospheric correction because they are spectrally
related. Even when the atmospheric correction error is 3
times the mission specification, relative errors in the
retrieved ChlCI for the entire Chl range are still <2.0% for
most aerosol types (Figure 11b; a = 0.7). In comparison,
relative errors in the retrieved ChlOC4 are 10 times higher for
Chl < 0.1 mg m�3. Furthermore, while the digitization noise-
induced errors, assumed randomly distributed, may be
averaged out if a sufficient number of points (image pixels)
are available, the atmospheric correction errors may create a
bias at various spatial and temporal scales because the con-
ditions that result in these atmospheric correction errors may
not be random (yet the spatial and temporal distributions of
these conditions are unknown). This effect will be shown
below with satellite data analysis.

7. Evaluation Using SeaWiFS and MODIS/Aqua
Imagery

[45] The CIA was applied to SeaWiFS Level-2 GAC data
to derive ChlCI and compared with the default ChlOC4. In the
comparison, the following quality control flags were used to
discard all suspicious data points: atmospheric correction
failure (bit 1), land (bit 2), high sun glint (bit 4), total

radiance greater than knee (a predefined threshold, bit 5),
large satellite zenith (bit 6), stray light (bit 9), cloud/ice (bit
10), coccolithophores (bit 11), large solar zenith (bit 13), low
water-leaving radiance (bit 15), chlorophyll algorithm fail-
ure (bit 16), questionable navigation (bit 17), near-IR
exceeds maximum iteration (bit 20), chlorophyll warning
(bit 22), and atmospheric correction warning (bit 23). These
are the same flags as used to perform data quality control
during SeaWiFS and MODIS Level-3 data binning. Figure 1
shows the images of ChlOC4, ChlCI, t_865, and Rrs(555) for
the North Atlantic Ocean Gyre from an arbitrarily selected
date.
[46] The image speckling effect is apparent in the ChlOC4

image (Figure 1a), where discontinuity and patchiness can
also be found (a few examples are outlined in circles). While
the speckling effect (pixelization noise) is due primarily to
digitization noise-induced errors, the patchiness is more
likely due to atmospheric correction errors and other cor-
rection errors (such as whitecap correction). Indeed, similar
discontinuity and patchiness are also found in the t_865 and
Rrs(555) images (Figures 1c and 1d). Such sharp changes
and patchiness in both the atmosphere and ocean properties
in an ocean gyre are unlikely to be realistic but can only be
due to algorithm errors. These errors occasionally led to
Rrs(555) values less than the theoretical limit for even the
clearest ocean waters, 0.001 sr�1. In contrast to the ChlOC4
image that contains speckling noise and patchiness, the

Figure 10. Error distribution in the retrieved Chl due to digitization round-off and instrument noise-
induced Rrs(l) errors for a clear maritime atmosphere (see Figure 9). In situ Rrs data for the input Chl con-
centrations (from 0.02 to 0.4 mg m�3) were combined with the Rrs(l) errors to estimate Chl, where the
“true” Chl was determined from the input Rrs data free of errors. The differences were used to determine
the relative retrieval errors. Note that the CI-based retrieval errors are independent of Chl concentrations.
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ChlCI image in Figure 1b, derived from identical Rrs(l) data
as used to derive ChlOC4, shows much smoother and more
spatially coherent distributions even near cloud edges. These
results strongly suggest that ChlCI is much more immune to
both digitization noise and atmospheric correction errors, con-
sistent with those found from the simulations (Figures 9–11).
Note that some of the noises are due to stray light contamina-
tion near clouds, but most of these noises are effectively
removed by the CIA, suggesting that these noises are also
spectrally linear.
[47] To quantify the image speckling noise from the sat-

ellite images, a 3 � 3 median filter was used to smooth the
Chl images, with the result assumed as the truth. The rela-
tive difference between the original data and the smoothed
data was assumed to be primarily from digitization noise-
induced errors. To avoid potential assessment bias due to
insufficient sample size, all valid SeaWiFS Level-2 pixels
for the 20° � 20° box in the North Atlantic Gyre from the
599 images in 1998 were queried, and RMS error for each
predefined Chl interval was calculated. Figure 12a shows
that the RMS errors in ChlOC4 increase sharply with
decreasing Chl, while these errors in ChlCI remain stable at a
much lower level. The overall patterns agree very well with
those from the model simulations (Figure 10), suggesting
that most of these speckling errors originated from digitiza-
tion noise (through error propagation in the atmospheric
correction). The discrepancy in the error magnitude between
Figure 10 and Figure 12a originated from the different
scenarios: Figure 10 is for a single observing condition
based on simulations, while Figure 12a accounts for all
observing conditions for the entire year. Another reason may
be due to stray light and imperfect sun glint and whitecap
corrections, which were not accounted for in the simulations.
Indeed, the SeaWiFS GAC data were collected by resam-
pling the 1 km data every fourth row and column, and the
potential small clouds between the resampled pixels may
lead to stray light contamination to the valid pixels. These
potential stray light problems for SeaWiFS GAC data cannot

be assessed from the data alone because of the data gap (i.e.,
the resampled “1 km” pixels in the GAC data are 3 km away
from each other). Yet, Figures 12a and 1 show that under
realistic measurement conditions, the relative RMS errors in
ChlCI are significantly smaller than in ChlOC4 for low con-
centrations. This finding holds true even when the SeaWiFS
local area coverage (LAC) data at 1 km resolution are used
for the same comparison. Similar findings were obtained
for MODIS/Aqua 1 km resolution data (Figure 12b).
[48] The statistics in Figure 12a also suggest the

improvement of the CI algorithm in reducing the number of
extreme data points from the OC4 algorithm (e.g., Chl <
0.02 mg m�3). These extreme points are not only due to
digitization noise-induced errors but also due to atmospheric
correction errors or other algorithm artifacts (whitecap and
sun glint corrections, stray light contamination), or both.
Indeed, the changes in the number of valid pixels for each
Chl interval from ChlOC4 to ChlCI suggest data redistri-
bution, which will affect time series analysis over low-
concentration waters. Similar observations were found from
MODIS/Aqua data (Figure 12b).
[49] SeaWiFS data for the North Atlantic and South

Pacific Gyres for an entire year were visualized to examine
whether the above observations could be generalized. The
results confirmed those shown in Figure 1 and suggest that
most digitization noise-related specking errors can be
removed using the CIA for low concentrations, and many
other algorithm artifacts (sun glint and whitecap corrections,
atmospheric correction, and stray light contamination) can
also be reduced with the CIA. The effect of such correction
on time series analysis is demonstrated below.

8. Comparison Between ChlOC4 and ChlCI
Time Series

[50] Figure 13 shows a 1 year time series at an oligotro-
phic site in the North Atlantic Gyre using SeaWiFS daily
Level-2 GAC data. While the ChlOC4 data show high

Figure 11. Sensitivity of ChlCI to atmospheric correction errors. (a) SeaWiFS global data during 2006
showed aerosol-type (defined as the aerosol scattering angstrom exponent, a) distributions. More than
99% of a falls between 0.0 and 1.5. (b) Errors in the retrieved ChlCI for two atmospheric correction errors
(trw443 = 0.002 and 0.006) for various a values. The trw443 error = �0.002 is the ocean color satellite
mission specification, corresponding to about 5% Rrs443 error for blue waters. The trw443 error =
0.006 artificially increased this threshold to 3 times higher, leading to a relative Rrs555 error approaching
100% for a = 0.7. Even under this extreme condition, the corresponding ChlCI retrieval error is still
<2.0%. Note that similar to those shown in Figure 10, the percentage ChlCI errors are independent of
Chl values.
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speckling (high standard deviations at each 3 � 3 point) and
nearly no seasonality due to other errors, the ChlCI data show
much cleaner time series and also a clear seasonality. Note
that the standard deviation at each point represents digitiza-
tion noise-induced errors, but the deviation of the 3 � 3
mean data value (e.g., those outlined in circles in Figure 13)
from the seasonal pattern represents errors from other sour-
ces such as imperfect atmospheric correction, which are
effectively removed in the ChlCI time series. This effect also
remains for the monthly composite time series at the same
location (Figure 14). The seasonality of ChlCI is clear in
every year of the 13 year time series (note that there were
some missing data after 2005 due to instrument operations)
but less apparent in the corresponding ChlOC4 time series.

The mean monthly variance (standard deviation over mean)
was reduced from 26.6% in ChlOC4 to 9.9% in ChlCI. All
these results suggest improvements of the CIA in con-
structing Chl time series for oligotrophic waters.
[51] The improvement of ChlCI in deriving a better time

series is primarily because of reduction of algorithm-induced
errors as opposed to the reduction in speckling noise. As
shown in Figures 1 and 13, as well as in the study by Hu
et al. [2001], while the image speckling noise can be
removed using pixel averaging (either 3 � 3 or temporal
averaging), algorithm-induced errors cannot be removed this
way and will ultimately propagate to higher-level data pro-
ducts in global or regional time series analyses. Thus, the
significantly reduced errors in the ChlCI data product may
result in more consistent spatial and temporal patterns than
the current OCx algorithm for the oligotrophic oceans.

9. Discussion

9.1. Algorithm Accuracy: Band Ratio or Band
Difference?

[52] The comprehensive analyses above, from direct vali-
dation, theoretical background, and sensitivity analysis
through bio-optical and atmospheric correction simulations
to satellite data product comparison, all suggest that the
CIA is more robust than the OC4 (or OCx) algorithm for
low concentrations (Chl ≤ 0.25 mg m�3). This range corre-
sponds to about 78% of the global ocean area, suggesting
potentially profound effects in global- and regional-scale
studies. In particular, studies focusing on ocean gyre vari-
ability [McClain et al., 2004b; Polovina et al., 2008] and
second-order ocean chlorophyll variability [Brown et al.,
2008] may need to be revisited with the data products gen-
erated with the new algorithm.
[53] The improved performance of the CIA for low con-

centrations (Chl ≤ 0.25 mg m�3) is primarily due to two
reasons. First, for most cases considered, it appears equiva-
lent and often more tolerant (i.e., less sensitive) than the
OCx algorithm to in-water perturbations when the various
OACs (especially particle backscattering) do not covary.
Although the noncovariance of the OACs may represent a
primary reason why a global algorithm may not work for a
particular region [Claustre and Maritorena, 2003; Dierssen,
2010], it is not the objective of any empirical algorithm to
solve this global puzzle. Likewise, the chlorophyll-specific
absorption coefficient (i.e., absorption per Chl) may also
vary substantially due to different pigment composition and
phytoplankton size, but all global empirical algorithms
would suffer the same from this variability. At the least, the
CIA is equivalent or slightly better for most oligotrophic
waters than the OCx algorithm to the in-water perturbations.
The improved performance over backscattering perturba-
tions is of particular importance, as this may lead to an
improved Chl retrieval in scattering-rich low-concentration
waters due to bubbles or other marine organisms such as
coccolithophores. Second and most importantly, the CIA
can partially remove most algorithm artifacts induced by
digitization-noise errors, atmospheric correction errors,
residual errors due to imperfect sun glint and whitecap cor-
rections, and some of the stray light contamination.
Although the band-ratio algorithm can also remove some of

Figure 12. Chl errors resulted from digitization round-off
and instrument noise, obtained from SeaWiFS and
MODIS/Aqua image analyses. (a) Statistics of speckling
error in SeaWiFS GAC images in 1998 (n = 599) for a
20° � 20° region in the Sargasso Sea. The speckling error
is defined as the relative difference between the original
Level-2 Chl and a 3 � 3 median-filter smoothed Level-2
Chl, with the assumption that most noise-induced speckling
errors are removed in the latter. Note that while the RMS
errors in ChlOC4 increase sharply with decreasing concentra-
tions, RMS errors in ChlCI remain stable at a much lower
level in the entire concentration range here. The overall pat-
terns agree well with those from the model simulations
(Figure 10), suggesting that most of these speckling errors
originate from digitization round-off and instrument noise
(through atmospheric correction). The total number of valid
pixels from each algorithm indicates that all ChlOC4 ≤ 0.02
mg m�3 appear unrealistic due to primarily atmospheric cor-
rection artifacts. (b) Same as in Figure 12a, but data were
extracted from MODIS/Aqua Level-2 images in 2002 (n =
745) for a 20° � 20° subregion in the Southern Pacific.
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these errors to a certain degree, the removal is much less
effective for low-concentration waters.
[54] Indeed, the concept to use alternative ways instead of

band-ratio algorithms to derive Chl is not new. Campbell
and Esaias [1983] proved why a curvature algorithm in the
form of Sj

2/(SiSk) could be used to derive chlorophyll con-
centrations. Here Sj represents the measured signal in one
band (calibrated or not) and Si and Sk represent the signals
from the two neighboring bands. Barnard et al. [1999]
showed the validity of a similar curvature approach to
derive absorption coefficients. Lee and Carder [2000]
further used simulations to compare band-ratio and band-
curvature algorithm performance and highlighted that band-
ratio algorithms were more sensitive to a wider dynamic
range. More recently, a spectral curvature between 443 and
555 nm was used to classify Karenia brevis (a toxic dino-
flagellate) blooms from other blooms in the Gulf of Mexico
[Tomlinson et al., 2009], yet no attempt was made to relate
the curvature to Chl.
[55] Early pioneer efforts for algorithm development also

proposed band-difference algorithms [Viollier et al., 1978;
Viollier et al., 1980; Tassan, 1981], where the difference
between two neighboring blue and green bands was related

to surface Chl. The rationale for choosing a blue-green band
difference was because of its tolerance to various errors in
the spectral reflectance, including whitecaps [Tassan, 1981].
However, through model estimates, Gordon and Morel
[1983] argued that because reflectance is, in principle, pro-
portional to backscattering to the first order (i.e., Rrs ∝ bb/a;
see equation (7)), a band-difference algorithm will retain
most variability of bb relative to phytoplankton, thus subject
to large errors if bb varies independently from phytoplankton
(e.g., sediment-rich coastal waters). In contrast, as long as
the spectral variability of bb is within a narrow range, a
band-ratio algorithm will overcome such variability to first
order, making the algorithm less sensitive to independent bb
changes. For this reason, except for a handful of studies in
the 1980s, band-difference algorithms have rarely been used
in the published literature. One exception was perhaps the
normalized difference pigment index (NDPI) algorithm
proposed by Frouin [1997] for the POLDER instrument
[Mukai et al., 2000], which combined the band-difference
and band-ratio forms using the 443, 490, and 555 nm bands.
The NDPI algorithm is essentially a band-ratio algorithm,
although the 443–555 difference in the numerator has been
shown to remove some noise. A similar combination of band

Figure 13. Chl (in mg m�3) time series derived from SeaWiFS GAC Rrs(l) data using the (top) OC4v6
algorithm and the (bottom) CI algorithm. Data were extracted from 3 � 3 pixels centered at 24.5°N, 55°W
from the daily measurements. For any given image (date), only when more than half of the pixels (in this
case, ≥5 pixels) contained valid data (i.e., not associated with any suspicious flags) were statistics esti-
mated. While the magnitudes of the standard deviations (vertical bars) indicate speckling errors caused
by digitization round-off and instrument noise (Figures 9, 10, and 12), deviations from the general sea-
sonal pattern (e.g., outlined in the dashed circles) are from atmospheric correction errors (Figure 11). Both
errors are significantly reduced in ChlCI.
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difference and band ratio was proposed for the recently
launched Geostationary Ocean Color Imager (GOCI), yet its
performance over oligotrophic waters needs to be validated.
Note that because most of the atmospheric correction resid-
ual errors are not spectrally flat (Figure 11a), most of the
residual errors are retained in the 443–555 (or other blue-
green) difference algorithms, yet they can be successfully
removed by the CIA because of the three-band design
(Figure 11b).
[56] The fundamental principles and model simulation

results in sections 6.1 and 6.2 suggest that the arguments by
Gordon and Morel [1983], made for moderate to high-
concentration waters, on the weakness of band-difference
algorithms should be revisited for oligotrophic oceans.
Indeed, for Chl ≤ 0.3 mg m�3, the simulation results showed
that a three-band difference algorithm (i.e., the CIA) is
more tolerant to independent bb changes than the band-
ratio algorithm. This may appear against intuition for the
reasons outlined by Gordon and Morel [1983]. However,
equation (6) shows that Rrs(l) is not proportional to partic-
ulate backscattering (bbp) but influenced by both molecular
and particle backscattering (bbw and bbp). When Chl is low,
the proportion of bbp to total bb is relatively small (e.g.,
bbp(440) �35% of total bb(440) for Chl = 0.1 mg m�3, and
the other 65% is due to a constant water molecular scatter-
ing), resulting in the tolerance of the CIA to independent bbp

changes. In addition, the design of CI (equation (3)) places
more relative weighting of bbw than for bbp for low con-
centrations. For high-Chl waters (e.g., Chl = 1.0 mg m�3;
Figure 8b), bbp dominates bb, and the CIA becomes more
sensitive than the OC4 algorithm to independent bbp chan-
ges, consistent with the arguments of Gordon and Morel
[1983]. For the tolerance to other errors (sensor noise,
atmospheric correction residual errors, sun glint and white-
cap correction residual errors, stray light contamination,
etc.), the CIA is much better than the band-ratio algorithm,
confirming Tassan’s argument. The CIA, however, is not a
simple blue-green difference but takes a third band in the red
to account for the various errors listed above.
[57] The stability of empirical Chl algorithms to indepen-

dent bbp changes is particularly important to reduce Chl
errors or inconsistencies either in one ocean basin or across
multiple basins. Dierssen [2010] showed that for low Chl
values (<0.2–0.4 mg m�3), bbp(532) may increase by several
fold from the North Atlantic to the California coastal waters
for the same Chl, and bbp(532) in the same ocean basin may
also remain relatively stable when Chl varied substantially.
Similarly, Loisel et al. [2002] showed seasonal shifts of
bbp(490)/Chl from SeaWiFS monthly data for both the North
Atlantic and North Pacific, with their relative ratios varying
between �0.6 and �1.7 (�10�2 (m�1/mg m�3)), a change
of about threefold. Figure 8b suggests that for a threefold

Figure 14. Chl (in mg m�3) time series derived from SeaWiFS GAC Rrs(l) data using (a) the OC4v6
algorithm and (b) the CI algorithm. Data were first extracted from 3 � 3 pixels centered at 24.5°N,
55°W from the daily measurements. For any given image (date), only when more than half of the pixels
(in this case, ≥5 pixels) contained valid data (i.e., not associated with any suspicious flags) were statistics
estimated. The daily data were then averaged for the calendar month to construct the monthly time series.
Note that SeaWiFS was not continuously operational after 2005 because of instrument operations. Note
the significant reduction of monthly variance from ChlOC4 to ChlCI because the latter is more tolerant to
both digitization noise and atmospheric correction errors.
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change between 0.175 and 0.525 on the x axis, relative errors
in ChlCI are mostly within �10% for Chl ≤ 0.3 mg m�3,
while the relative errors in ChlOC4 nearly doubled. Thus, the
CIA can reduce backscattering-induced errors in the Chl
retrieval for oligotrophic waters.
[58] Although the accuracy of the CIA appears to be

higher than the SeaWiFS OC4 algorithm (Figure 4) and
MODIS/Aqua OC3 algorithm (Figure 5), it is indeed diffi-
cult to evaluate the absolute algorithm accuracy for low
concentrations. This is primarily due to the lack of sufficient
high-quality in situ data. The entire SeaBASS archive is
restricted to Chl ≥ 0.02 mg m�3, and only a limited number
of stations had Chl between 0.02 and 0.05 mg m�3. Labo-
ratory measurement errors in determining Chl from seawater
samples, using either fluorometric or HPLC methods, could
be up to 50% from earlier reports [Trees et al., 1985;
Kumari, 2005]. A more recent comparison between fluoro-
metric and HPLC measurements suggested that these errors
could be much smaller [Werdell and Bailey, 2005], yet field
measurements in the Southern Ocean still showed some
degree of uncertainties for low concentrations [Marrari et al.,
2006]. The errors in these ground truth data further weaken
the statistical robustness of the validation results when only
several points are available. Future efforts may emphasize
on the oligotrophic ocean gyres to collect more in situ data

in this range. Because most commercial in situ fluo-
rometers have a precision and also a detection limit of
about 0.01 mg m�3, accurate in situ measurement for this
range is extremely difficult. While new sensors may be
developed to increase the precision and accuracy, our current
emphasis is on data consistency across various spatial and
temporal scales, for which the CIA appears to yield better
performance than the band-ratio algorithms.
[59] Despite such improved performance in the CIA, all

potential artifacts or uncertainties for empirical algorithms,
as discussed and demonstrated in the refereed literature
[IOCCG, 2000, 2006; Dierssen, 2010], still exist (although
maybe to a lesser degree than band-ratio algorithms, as
shown in the algorithm sensitivity to bbp variability). Both
CI and band ratio provide a measure of the spectral change
of Rrs (either difference or ratio). While most of such chan-
ges could be related to phytoplankton (i.e., Chl), they could
also be modulated by changes in CDOM or other OACs. In
addition, all these empirical algorithms assume, implicitly, a
stable covariation of the chlorophyll-specific absorption
coefficient with Chl. The ultimate way to improve Chl
retrievals in the global oceans may still be to account for all
these variability explicitly through semianalytical inver-
sions, but this is out of the scope of the present work. The
semianalytical algorithms, at least in their present forms,

Figure 15. Comparison between SeaWiFS Level-2 (a) ChlOC4 and (b) ChlOCI over the western North
Atlantic Ocean. SeaWiFS data were collected on 1 June 2004 (17:15 UT) and processed with SeaDAS6.1.
The Level-2 quality control flags were turned off to show the circulation features. Note that some eddy
features are clearly revealed in the ChlOCI image but absent in the ChlOC4 image because of noise and
residual errors in atmospheric correction and other corrections.
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Figure 16. MODIS/Aqua Level 2 ChlOC3 and ChlOCI derived from a subregion in the South Pacific Gyre
(about 2200 � 440 km centered at 25.2°S, 110.8°W) on 4 March 2003 (21:10 UT). (a and c) The default
ChlOC3 when the quality control flags are on and off, respectively. (b and d) The corresponding ChlOCI
images.
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however, are not immune to the problems shown in
Figure 1d, where Rrs data (input of the algorithms) contain
substantial noise and errors. These errors must be corrected
in order to improve the performance of semianalytical
algorithms. Likewise, algorithms for many other ocean color
products (e.g., IOPs, particulate organic carbon, particulate
inorganic carbon) rely heavily on accurate Rrs(l), whose
performance may also be improved once the errors in the
satellite-derived Rrs(l) are reduced.
[60] All above analyses were restricted to SeaWiFS GAC

data and MODIS LAC data. However, application of the
same CIA algorithm to SeaWiFS LAC data showed similar
improvements over image quality. Figure 15 shows an exam-
ple of the comparison of ChlOC4 and ChlOCI using SeaWiFS
Level-2 LAC data. Clearly, all instrument/algorithm artifacts
shown in the GAC data (Figure 1) also exist in the LAC data
(to a lesser degree), but these artifacts can be effectively
removed by the CIA.
[61] Analyses of MODIS/Aqua Level-2 data for a 20° �

20° box in the South Pacific Gyre (745 images in 2002)
showed similar results as for SeaWiFS. Figure 12b shows
that, although the speckling errors are reduced for MODIS
ChlOC3 relative to SeaWiFS ChlOC4 (MODIS/Aqua instru-
ment signal-to-noise ratio is about 2–3 times higher than that
of SeaWiFS), the general pattern remains the same, i.e.,
increased specking errors with decreasing concentrations.
MODIS ChlOCI, in contrast, shows relatively stable and
much lower specking errors. Nearly all data points with
ChlOC3 < 0.01 mg m�3 have been raised in ChlOCI, and this

is likely to be real, as the “clearest natural waters” had Chl
values of �0.02 mg mg�3 [Morel et al., 2007b].
[62] Figure 16 shows that MODIS/Aqua ChlOC3 data are

not immune to noise and algorithm errors even after all
suspicious data (associated with the various quality control
flags) are discarded. In contrast, the CIA successfully cor-
rected these suspicious data to reasonable levels, as gauged
from nearby pixels and adjacent images. This result explains
the histogram shift between ChlOC3 and ChlCI for extremely
low values in Figure 12b. Furthermore, even when all the
quality control flags are turned off (i.e., all low-quality
nonzero data are included), the CIA appears to perform well
on all those flagged pixels (Figures 16c and 16d), indicating
that the Rrs(l) errors from those pixels are spectrally related
so that the CIA could remove these errors, at least to the first
order. This suggests that the CIA may also result in more
spatial coverage, once appropriate flags are determined to
relax the quality control criteria.

9.2. Applications to Other Ocean Color Instruments

[63] The improved performance of the CIA over OCx for
low concentrations appears to be universal across sensors,
although the regression coefficients may need to be adjusted
to account for sensor specifics.
[64] Figure 17 shows an example of how the CIA (same

coefficients used for SeaWiFS) improves MERIS image
quality when compared with the default band-ratio algo-
rithm. The reduction of speckling noise and striping noise is
apparent in the ChlOCI image, with more coherent eddy

Figure 17. Comparison between MERIS full-resolution (a) ChlOC3 and (b) ChlOCI over the western
North Atlantic Ocean. MERIS data were collected on 7 May 2011 (15:21 UT) and processed with
SeaDAS6.1. Note that most speckling and vertical striping noise in the ChlOC3 image has been removed
in the ChlOCI image, where several eddy and circulation features can be better observed. For demonstra-
tion purpose, MERIS full-resolution (FR) data at 300-m nominal resolution were used here. At reduced
resolution (RR at 1.2 km), signal-to-noise ratio was significantly higher, leading to much less noise,
yet the principle of noise reduction using the OCI algorithm was the same. Furthermore, although the
same algorithm coefficients for SeaWiFS were used, ChlOCI values in offshore water appear to be closer
than ChlOC3 to those from SeaWiFS for the same region during similar periods (Figure 13).
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features observed. More profound improvement has also
been found for CZCS (Figure 18). CZCS is an 8-bit instru-
ment with a much lower signal-to-noise ratio (about 3 times
lower than SeaWiFS), and the band-ratio algorithm resulted
in significant speckling noise and other errors (Figure 18a),
where no ocean feature can be observed. In contrast, most
of these errors have been removed by the CIA, leading to
clear eddy and circulation features in the North Atlantic

oligotrophic ocean. Furthermore, the general gradient from
west to east in Figure 18a, a result of algorithm artifact, has
been successfully removed in Figure 18b.
[65] The tolerance of the CIA to various noise and errors is

particularly useful for instruments with sensitivity much
lower than that of MODIS and SeaWiFS, as demonstrated
in Figure 18. The Visible/Infrared Imager/Radiometer Suite
of the National Polar-orbiting Operational Environmental

Figure 18. Comparison between CZCS Level-2 (a) ChlOC2 and (b) ChlOCI over the western North
Atlantic Ocean (about 30°–36°N, 70°–60°W). CZCS data were collected on 31 July 1983 (16:02 UT)
and processed with SeaDAS6.1. Note that all eddy and circulation features in the ChlOCI image are com-
pletely absent in the ChlOC2 image.
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Satellite System Preparatory Project (NPP), launched in
space on 25 October 2011, was specified to have sensitivity
lower than SeaWiFS. Thus, significant noise will result from
band-ratio Chl algorithms for low concentrations, yet the
CIA is likely to remove all these artifacts.

9.3. Chl Climate Data Record

[66] Although the absolute accuracy in the retrieved
ChlOCI for ocean color instruments other than SeaWiFS and
MODIS/Aqua has not been evaluated, we believe that once
algorithm coefficients are tuned for the particular instru-
ments or the satellite-derived Rrs(l) are tuned to the Sea-
WiFS wavelengths, a significant improvement in product
accuracy, in addition to improved image quality, can be
achieved. Such an improvement may lead to more consistent
observations between different instruments. For example,
after a slight adjustment to convert the MODIS/Aqua
Rrs(547) to Rrs(555) and application of the same CIA and
coefficients (equation (4)) to the global data for 2006, the
mean ratio between MODIS and SeaWiFS Chl over the
global oligotrophic oceans shows much less seasonal vari-
ability and is closer to 1.0 from the CIA than from the OCx
algorithms (Figure 19). Such an improvement is even more
profound when data distributions, rather than a global mean
ratio, are examined. Figure 20 shows the data distributions
for all deep waters (>200 m) from the band ratio (OCx) and
CI algorithms using all SeaWiFS and MODIS/Aqua data
collected during November 2006. Although there is a slight
offset of 0.01–0.02 mg m�3 in the global mean and median
values between the two algorithm results (Figures 20a and

20b, respectively), the CIA (after blending with the OCx for
Chl > 0.25 mg m�3) resulted in nearly identical histograms
between SeaWiFS and MODIS/Aqua measurements, a sig-
nificant improvement in cross-sensor data consistency
compared with the OCx results. Figure 21 further shows the
spatial patterns of the improved data consistency between
the two instruments for 2 months in 2006. The SeaWiFS/
MODISA Chl ratios from the OCx algorithms often showed
a substantial departure from 1.0 with coherent spatial pat-
terns, and such patterns varied with time. In contrast, the
same ratios from the OCI algorithm were much closer to 1.0,
with most of the spatial and temporal patterns removed.
Analyses for other months of 2006 showed similar
improvements. Although we are still performing an exten-
sive evaluation of the new algorithm for the global ocean
using all SeaWiFS and MODIS/Aqua data, the improved
consistency between SeaWiFS and MODIS/Aqua measure-
ments from these preliminary results is indeed encouraging
and may eventually lead to a better multisensor Chl climate
data record for studies of the ocean’s long-term biogeo-
chemical changes in response to climate variability [Antoine
et al., 2005; Gregg et al., 2005; Gregg and Casey, 2010;
Maritorena et al., 2010]. The reduction in spatially coherent
inconsistency patterns, as demonstrated in Figure 21, may
also have profound impacts on basin-scale and cross-basin
studies of ocean changes and processes.

9.4. Other Applications

[67] Studies of the ocean’s biogeochemistry call for
the highest accuracy in data products. For many other

Figure 19. Mean Chl ratio over global oligotrophic oceans between MODIS/Aqua and SeaWiFS esti-
mates using the OCx (blue) and CI (black) algorithms. Here “oligotrophic” is defined as all 9 km pixels
with SeaWiFS mission mean Chl ≤ 0.1 mg m�3.

HU ET AL.: A NOVEL OCEAN CHLOROPHYLL a ALGORITHM C01011C01011

21 of 25



applications, such a strict requirement may often be relaxed.
For example, tracking of oil pollution requires timely
knowledge on major ocean circulation features, including
eddies [Hu, 2011; Liu et al., 2011]. The various examples
shown in Figures 15–18 prove that the CIA can lead to
significantly improved image quality for feature recognition
when individual images are used. This is due to its ability to
reduce noise and errors as well as to recover most of the
flagged (i.e., suspicious) pixels. Some of the eddy features
are completely absent in the ChlOCx images because of noise
and algorithm errors, regardless of the color stretch, but
are vividly revealed in the ChlOCI images. This ability will

greatly facilitate studies of eddy dynamics [e.g., Lehahn
et al., 2007; Rossby et al., 2011] in the oligotrophic oceans.

10. Conclusion

[68] A novel three-band reflectance difference algo-
rithm, namely, a CIA, to estimate surface chlorophyll a
concentrations from satellite ocean color measurements has
been shown superior to the existing band-ratio algorithms in
reducing uncertainties for Chl ≤ 0.25 mg m�3, correspond-
ing to about 78% of the global ocean. This was somehow a
surprise, given the known artifacts of two-band difference

Figure 20. Chl distributions in the global deep oceans (>1000 m) during November 2006, as derived
from SeaWiFS (black) and MODIS/Aqua (red) measurements. Results are from (a) the OCx band-ratio
algorithms and (b) the CI algorithm (blended with the OCx algorithms for Chl > 0.25 mg m�3). Note
the offset of 0.01–0.02 mg m�3 in the global mean and median values between Figures 20a and 20b.
Results from other months of 2006 show similar improvements in histogram consistency.
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algorithms proposed three decades ago. We attribute the
success of the CIA to the new design of adding a third band
in the red to the blue-green bands. This addition enables the
CIA to relax the requirements of spectrally flat errors for the
two-band difference algorithms to spectrally linear errors
for the CIA and also increases the stability of algorithm
performance over backscattering variability of the ocean.
The improved performance of the CIA over the existing
band-ratio algorithms has been demonstrated in all mea-
sures, from global validations using in situ data, atmo-
spheric correction, and bio-optical simulations to satellite
image analysis. The CIA also appears to improve data
consistency between different instruments for oligotrophic
oceans, and such consistency may lead to an improved Chl
climate data record from multiple sensors for future ocean-
color continuity missions. We expect to implement the CIA
for multisensor global processing for oligotrophic oceans
to further test its robustness, which might lead to different
and potentially improved spatial and temporal patterns of
Chl in response to long-term climate changes and short-term
climate variability.
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