
1
Primer

The Light-Driven Proton Pump Proteorhodopsin
Enhances Bacterial Survival during Tough Times
Edward F. DeLong1,2*, Oded Béjà3*
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Some microorganisms contain proteins that can interact with

light and convert it into energy for growth and survival, or into

sensory information that guides cells towards or away from light.

The simplest energy-harvesting photoproteins are the rhodopsins,

which consist of a single, membrane-embedded protein covalently

bound to the chromophore retinal (a light-sensitive pigment) [1].

One class of archaeal photoproteins (called bacteriorhodopsin) was

shown to function as a light-driven proton pump, generating

biochemical energy from light [2,3]. For many years, these light-

driven proton pumps were thought to be found only in relatively

obscure Archaea living in high salinity.

Ten years ago, a new type of microbial rhodopsin (proteorho-

dopsin) was discovered in marine planktonic bacterial assemblages

[4]. This proteorhodopsin was co-localized on a large genome

fragment containing the small subunit ribosomal RNA gene,

which identified its genomic source—an uncultured gammapro-

teobacterium (of the SAR86 bacterial lineage). Further work

showed that proteorhodopsin could be expressed in Escherichia coli,

producing light-driven proton pumping, with photocycle kinetics

similar to archaeal bacteriorhodopsins [4]. Soon, proteorhodop-

sins were detected in other populations of planktonic marine

bacteria. These photoproteins were specifically ‘‘tuned’’ to absorb

the wavelengths of light found in the surrounding environment—

green light in surface waters and blue light at greater depths in the

water column [5].

Work over the past decade shows that proteorhodopsins and

related light-driven proton pumps are not an exception, but rather

the rule for microbial inhabitants of sunny environments like the

upper ocean (see Table 1 and Box 1). Based on genomic survey

data, proteorhodopsins occur in an estimated 13% to 80% of

marine bacteria and archaea in oceanic surface waters [7,8].

Given that microbial cell densities can approach one billion

microbes per litre, the potential influence of proteorhodopsin-

based light-driven energy flux in ocean ecosystems is significant

but still difficult to quantify directly. Proteorhodopsins add

substantially to the list of phototrophs (organisms that can use

light as an energy source) known to inhabitate ocean surface

waters, such as oxygenic and anoxygenic chlorophyll-based

phototrophs [6,7].

The proteorhodopsin proteins retain their native structure and

function in E. coli membranes, an ability not shared by their close

homologues, bacteriorhodopsins. Therefore, proteorhodopsins

expressed in E. coli are very useful for probing rhodopsin structure

and function [7,18–21]. The relative ease of working with

proteorhodopsins in E. coli helped to dissect their light-dependent

proton pump activity using definitive biophysical assays [19,22–25]

and their potential role in phototrophy [17,18] (see Figure 2 for an

artist’s rendition of the fundamental arrangement of proteorho-

dopsin in the cell membrane). However, since all this work relied on

the heterologous E. coli system, the specific physiological roles and

adaptive strategies of native marine bacteria that contain proteor-

hodopsin still needs to be better described.

Cultivation-independent genomic surveys (e.g., ‘‘metage-

nomics’’) revealed proteorhodopsin presence and diversity, and

heterologous expression in E. coli demonstrated many of its

functional properties. Access to cultivable marine bacteria that

contain proteorhodopsin, however, would be very useful to further

characterize its native function in diverse physiological contexts.

Whole-genome sequencing then came to the rescue. The

Gordon and Betty Moore Foundation (GBMF) Microbial Genome

Sequencing Project (http://www.moore.org/microgenome) unex-

pectedly revealed that many culturable marine bacteria submitted

for sequencing (including Pelagibacter spp., Vibrio spp., and

Flavobacteria isolates) in fact possessed proteorhodopsin genes

(Table 1). What can these proteorhodopsin-containing isolates tell

us? Experiments with the proteorhodopsin-containing isolate

‘Cand. P. ubique’ (a member of the SAR11 bacterial lineage, the

most abundant bacterial group in the ocean [19,20]) showed no

significant light enhancement of growth rate or yield [11]. Later,

however, Gómez-Consarnau and colleagues [13] showed light-

dependent growth at low-carbon concentrations in marine

flavobacteria. However since these flavobacteria are difficult to

manipulate genetically, a direct relationship between the proteor-

hodopsin protein and light-dependent growth could not be

definitively shown.

Now, a new study by the same research group led by Jarone

Pinhassi, published in this issue of PLoS Biology [16], definitively

demonstrates one role for proteorhodopsin in a light-dependent

adaptive strategy. In a series of experiments, they showed that

marine Vibrio cells survived starvation much better in the light than

in the dark. Since vibrios are amenable to genetic manipulation,

Gómez-Consarnau et al. could construct a strain where the

proteorhodopsin gene was deleted. In the absence of proteorho-

dopsin, light-dependent starvation survival was abolished, and

then restored when proteorhodopsin was supplied in trans.

Gómez-Consarnau et al. have conclusively demonstrated for the

first time at least one specific physiological role for proteorho-

dopsin in a native marine bacterium [16]. Considering the

abundance of proteorhodopsins (estimated to be present in 80% of

marine bacteria in some waters [7]) and the possibility of lateral

gene transfer [12], the potential influence of even this one adaptive
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Table 1. Marine bacterial isolates and genome fragments containing proteorhodopsins.

Organism Strain General Group Reference

Genomes

Methylophilales HTCC2181 Betaproteobacteria GBMF

Rhodobacterales sp. HTCC2255 Alphaproteobacteria GBMF

Vibrio angustum S14 Gammaproteobacteria GBMF

Photobacterium SKA34 Gammaproteobacteria GBMF

Vibrio harveyi ATCC BAA-1116 Gammaproteobacteria GenBank # CP000789

Marine gamma HTCC2143 Gammaproteobacteria GBMF

Marine gamma HTCC2207 Gammaproteobacteria GBMF

Cand. P. ubique HTCC1002 Alphaproteobacteria GBMF

Cand. P. ubique HTCC1062 Alphaproteobacteria [26]

Rhodospirillales BAL199 Alphaproteobacteria GBMF

Marinobacter ELB17 Gammaproteobacteria GBMF

Vibrio campbelli AND4 Gammaproteobacteria GBMF

Vibrio angustum S14 Gammaproteobacteria GBMF

Dokdonia donghaensis MED134 Flavobacteria GBMF

Polaribacter dokdonensis MED152 Flavobacteria GBMF

Psychroflexus ATCC700755 Flavobacteria GBMF

Polaribacter irgensii 23-P Flavobacteria GBMF

Flavobacteria bacterium BAL38 Flavobacteria GBMF

BACs and fosmids

HF10_05C07 Proteobacteria [24]

HF10_45G01 Proteobacteria [24]

HF130_81H07 Gammaproteobacteria [24]

EB0_39F01 Alphaproteobacteria [24]

EB0_39H12 Proteobacteria [24]

EB80_69G07 Alphaproteobacteria [24]

EB80_02D08 Gammaproteobacteria [24]

EB0_35D03 Proteobacteria [24]

EB0_49D07 Proteobacteria [24]

EBO_50A10 Gammaproteobacteria [24]

EB0_55B11f Alphaproteobacteria [24]

EBO_41B09 Betaproteobacteria [24]

HF10_19P19 Proteobacteria [17]

HF10_25F10 Proteobacteria [17]

HF10_49E08 Planctomycetes [24]

HF10_12C08 Alphaproteobacteria [24]

HF10_29C11 Euryarchaea [24]

MED13K09 unknown [10]

MED18B02 unknown [10]

MED35C06 unknown [10]

MED42A11 unknown [10]

MED46A06 unknown [10]

MED49C08 unknown [10]

MED66A03 unknown [10]

MED82F10 unknown [10]

MED86H08 unknown [10]

RED17H08 unknown [10]

RED22E04 unknown [10]

eBACHOT4E07 Gammaproteobacteria [25]

EBAC20E09 Gammaproteobacteria [25]
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strategy on marine bacterioplankton could be substantial given the

‘‘feast or famine’’ existence experienced by many of these

microbes. The Vibrio/proteorhodopsin model system is likely to

reveal further secrets on the nature and function of proteorho-

dopsin photosytems in bacteria that are usually (but erroneously)

considered as strict heterotrophs not capable of utilizing light at all.

While this study [16] adds an important new result, it certainly

does not solve the whole puzzle of proteorhodopsin photophysiol-

ogy. Considering the staggering variety of genetic, physiological

and environmental contexts in which proteorhodopsin and related

photoproteins are found, a great variety of light-dependent

adaptive strategies are likely to occur in the natural microbial

world. For example, in 2005, a new type of bacterial rhodopsin

(xanthorhodopsin) was discovered in the salt-loving bacterium

Salinibacter ruber [28]. Xanthorhodopsin is a proton-pumping

retinal protein/carotenoid complex in which the carotenoid

Box 1. A Decade of Proteorhodopsin
Milestones

2000 NFirst proteorhodopsin gene found in uncultured
SAR86 using metagenomics; proteorhodopsin
light-driven proton pump activity confirmed in
heterologous E. coli cells [4].

2001 NProteorhodopsin presence confirmed directly in
the ocean using laser flash photolysis [5].

2003 NProteorhodopsin genes also found in other
bacterial groups [8].

2004 NEnormous diversity of proteorhodopsin genes
found in the Sargasso Sea using metagenomics [9].

2005 NRetinal biosynthesis pathways found in metage-
nomic data and confirmed using E. coli cells [10].
NProteorhodopsin genes are found in ‘Canditatus
Pelagibacter ubique’ (SAR11), the most abundant
bacterium on earth; environmental SAR11 proteor-
hodopsin presence confirmed using metaproteo-
mics [11].

2006 NProteorhodopsin genes found in uncultured
marine Archaea [12].

2007 NFirst indication of proteorhodopsin light-depen-
dent growth in cultured Flavobacteria [13] (see
Figure 1 for colony morphologies and pigmenta-
tion).

2008 NProteorhodopsin genes found in non-marine
environments [14,15].

2010 NProteorhodopsin phototrophy directly confirmed
using a genetic system in marine Vibrio sp. [16]

Organism Strain General Group Reference

HOT2C01 unknown [8]

EBAC31A08 Gammaproteobacteria [4]

ANT32C12 unknown [8]

HF70_39H11_ArchHighGC unknown [12]

HF10_3D09_mediumGC unknown [12]

HF70_19B12_highGC unknown [12]

HF70_59C08 unknown [12]

Marine microbial isolates and large genome fragments from the environment GBMF, microbial genomes sequenced as part of the Gordon and Betty Moore Foundation
microbial genome sequencing project (http://www.moore.org/microgenome), found to encode proteorhodopsin genes. The list includes whole genome sequences
from a wide array of cultivated marine microorganisms (Genomes), as well as cloned large DNA fragments (BACs and fosmids) recovered directly from the environment.
doi:10.1371/journal.pbio.1000359.t001

Table 1. Cont.

Figure 1. Various colony morphologies and coloration of
different proteorhodopsin-containing bacteria used to study
proteorhodopsin phototrophy. From top to bottom, the flavobac-
terium Polaribacter dokdonensis strain MED152 used to show proteor-
hodopsin light stimulated growth [13]; the flavobacterium Dokdonia
donghaensis strain MED134 used to show proteorhodopsin light
stimulated CO2-fixation [23]; and Vibrio strain AND4 used to show
proteorhodopsin phototrophy [16]; note the lack of detectable
pigments in Vibrio strain AND4. However, when these vibrio cells are
pelleted, they do show a pale reddish color, which is the result of
proteorhodopsin pigments presence in their membranes. Photos are
courtesy of Jarone Pinhassi.
doi:10.1371/journal.pbio.1000359.g001
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salinixanthin functions as a light-harvesting antenna, transferring

energy to the rhodopsin/retinal complex [21]. It was recently

suggested that the ability of rhodopsins to bind salinixanthin

depends on a single glycine amino acid [30], suggesting that other

recently identified retinal proteins (e.g., proteorhodopsins) might

also interact with carotenoid antennas, since some possess the

identical homologous glycine residue.

What questions remain to be tackled for the second decade of

research on proteorhodopsin photophysiology? Maintenance of

energy charge during respiratory stress or starvation, the most likely

physiological mechanism explaining the results of Gómez-Con-

sarnau et al. [16], is just one example of a life history strategy

benefitting from proteorhodopsin. As Martinez and colleagues

pointed out [17], in different physiological, ecological, phylogenetic,

and genomic contexts, proteorhodopsin activity may benefit

microbes in a variety of ways. Besides producing ATP from the

light-generated proton gradient, flagellar motility and active

transport of solutes into or out of the cell can make use of the

proton motive force generated by proteorhodopsins [17]. Hetero-

trophs adapted to either high or low nutrient concentrations are

known to contain and express proteorhodopsins. Whether high

versus low nutrient adapted bacteria exhibit life-style–specific

patterns of proteorhodopsin photophysiology remains to be

determined. Already it seems clear that two different high-

nutrient–utilizing bacteria containing proteorhodopsin (vibrios and

flavobacteria) exhibit fundamentally different light-dependent

growth strategies [13,16]. Understanding the diversity of interactions

among proteorhodopsin-containing organisms in natural communi-

ties represents yet another layer of complexity [22]. Finally,

obtaining quantitative estimates of the total contribution of

proteorhodopsin photosystems to the overall energy flux in

microbial food webs is a worthy goal, but extremely challenging.

For chlorophyll-based oxygenic photosythesizers, fluorescence-based

assays, carbon dioxide uptake experiments, and oxygen evolution

measurements to constrain energy garnered from sunlight are

readily available. In contrast, light-dependent activity assays are not

simple, nor straightforwardly interpretable for proteorhodopsin-

containing microorganisms. The dizzying array of phylogenetic and

physiological contexts in which proteorhodopsins are found (Table 1)

also confounds any simple, universal approaches for quantifying

their energetic contributions in situ. Nevertheless, the future is bright

for both basic understanding as well as technological applications of

proteorhodopsins and the microbes that contain them. The

increasing availability of cultivable and readily manipulated model

systems, along with increasingly more sophisticated in situ studies in

the environment, promise to shed further light on the structure,

function, and ecological significance of these ubiquitous and

fascinating photoproteins.
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Figure 2. An artist’s rendition of the fundamental arrangement of proteorhodopsin in the cell membrane. Left panel: a cartoon (not to
scale) of planktonic bacteria in the ocean water column. Right panel: a simple view of one potential proteorhodopsin energy circuit. (1)
Proteorhodopsin – uses light energy to translocate protons across the cell membrane. (2) Extracellular protons – the excess extracellular protons
create a proton motive force, that can energetically drive flagellar motility, transport processes, or ATP synthesis in the cell. (3) Proton-translocating
ATPase – a multi-protein membrane-bound complex that can utilize the proton motive force to synthesize 5. Adenosine triphosphate (ATP, a central
high energy biochemical intermediate for the cell) from 4. Adenosine triphosphate (ADP, a lower energy biochemical intermediate). Illustration by
Kirsten Carlson, � MBARI 2001.
doi:10.1371/journal.pbio.1000359.g002
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