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Abstract
Prochlorococcus is the key phytoplanktonic organism of tropical gyres, large
ocean regions that are depleted of the essential macronutrients needed for
photosynthesis and cell growth. This cyanobacterium has adapted itself to
oligotrophy by minimizing the resources necessary for life through a drastic
reduction of cell and genome sizes. This rarely observed strategy in free-
living organisms has conferred on Prochlorococcus a considerable advantage
over other phototrophs, including its closest relative Synechococcus, for life in
this vast yet little variable ecosystem. However, this strategy seems to reach
its limits in the upper layer of the S Pacific gyre, the most oligotrophic region
of the world ocean. By losing some important genes and/or functions during
evolution, Prochlorococcus has seemingly become dependent on co-occurring
microorganisms. In this review, we present some of the recent advances in
the ecology, biology, and evolution of Prochlorococcus, which because of its
ecological importance and tiny genome is rapidly imposing itself as a model
organism in environmental microbiology.
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Cyanobacteria:
prokaryotes capable of
oxygenic
photosynthesis, a
process by which they
use solar energy to fix
carbon dioxide, with
the release of oxygen

Cyanophages: viruses
that specifically infect
cyanobacterial cells

INTRODUCTION

Cyanobacteria are the most ancient oxygenic phototrophs on Earth and have a key role in a
variety of ecosystems. Indeed, free-living and symbiotic cyanobacteria are collectively ubiqui-
tous, colonizing all environments reached by solar light, including the most inhospitable areas
of the planet, such as hot springs, sand deserts, and nutrient-depleted areas of the world ocean
(Garcia-Pichel et al. 2003, Garcia-Pichel et al. 2001). Despite the huge ecosystem they inhabit,
the diversity of marine planktonic, free-living cyanobacteria is surprisingly simple, compared to,
e.g., their benthic counterparts. Only a few genera are known so far, including the diazotrophs
(i.e., cells able to fix atmospheric N2) Trichodesmium and Crocosphaera and the two nondiazotrophs
Synechococcus and Prochlorococcus. To the first category can be added one recently discovered and
still uncultured organism (provisionally called UCYN-A) phylogenetically related to cyanobacte-
ria but which has the astounding peculiarity of possessing neither photosystem II nor RuBisCo
and thus has likely lost the ability to perform oxygenic photosynthesis (Zehr et al. 2008). Although
all of these phototrophs are regular inhabitants of subtropical, oligotrophic areas, only Prochloro-
coccus and Synechococcus are ubiquitous in these zones, while others are found only episodically, e.g.,
associated to mesoscale eddies (Fong et al. 2008). Furthermore, the abundance of Synechococcus in
these regions is typically two orders of magnitude (and its biomass ∼20 times) lower than that of
Prochlorococcus, which is the key photosynthetic organism of these gigantic areas (Partensky et al.
1999a, 1999b).

Many aspects of the biology, physiology, and ecology of Prochlorococcus have been discussed in
earlier reviews that we recommend. Eleven years after the discovery of Prochlorococcus, Partensky
et al. (1999b) wrote one of the first general overviews, which included some early molecular bi-
ology data. Other reviews focused on the comparative ecology of Prochlorococcus and Synechococcus
(Partensky et al. 1999a, Scanlan & West 2002). Ting et al. (2002) covered aspects dealing with the
photophysiology of these two organisms. Garcia-Fernandez et al. (2004) and Garcia-Fernandez
& Diez (2004) described some features of nitrogen and carbon assimilation specific to Prochloro-
coccus. Partensky & Garczarek (2003) compared the photosynthetic apparatuses of several atypical
cyanobacteria, including Prochlorococcus. Finally, more recent reviews by Coleman & Chisholm
(2007) and Scanlan et al. (2009) dealt with ecological genomics of Prochlorococcus or marine pico-
cyanobacteria in general. In the present review, we discuss one particular question emerging from
the recent literature on Prochlorococcus, namely, the biological causes of its tiny cell and genome
sizes and implications for its ecological success in warm, oligotrophic areas of the ocean. Nu-
merous genomes of Prochlorococcus strains (12 published so far, but in fact 13 appear in databases)
(Table 1), covering most of the ecotypic diversity existing within this genus (Kettler et al. 2007),
as well as large metagenomic databases (mainly from surface waters) that include many sequences
from natural Prochlorococcus populations and their phages (Rusch et al. 2007, Venter et al. 2004),
have recently become available. This has brought new insights about the biology, functional diver-
sity, and evolutionary patterns of this microorganism, highlighting the key role that lateral transfer,
mostly via cyanophages, plays in the dynamics of its genome. With this wealth of biological and
ecological information, this tiny and extremely abundant microorganism is rapidly imposing itself
as a new model in microbial ecology, only two decades after its discovery.

PROCHLOROCOCCUS AND OLIGOTROPHY

The success of Prochlorococcus in nutrient-poor areas of the ocean and its considerable contribution
to the chlorophyll (Chl) biomass—30–60% of the total Chl a is attributable to the Prochlorococcus-
specific divinyl-Chl a (Chl a2) in subtropical oligotrophic areas (DiTullio et al. 2003, Gieskes &
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Figure 1
Comparative vertical profiles of Prochlorococcus cell concentrations as determined by flow cytometry in the
S Atlantic gyre at 23◦ 54′ S, 25◦ W (station 57 of AMT13 cruise; data courtesy of S.W. Chisholm and Z.I.
Johnson) and in the S Pacific gyre at 26◦ 18′ S, 114◦ 06′ E (station GYR of Biosope cruise; data courtesy of
C. Grob and O. Ulloa). For the latter, Prochlorococcus cell concentrations in the upper 80 m were deduced
from divinyl-Chl a concentrations, assuming a divinyl-Chl a cell content of 0.23 fg per cell (see Grob et al.
2007 for details).

Gyre: a vast swirling
vortex of wind and sea
currents that occurs in
all oceans with calm
waters at the center

Kraay 1983, Goericke & Welschmeyer 1993, Partensky et al. 1996, Ras et al. 2008, Veldhuis &
Kraay 2004)—make it a key player in the carbon cycle on a global scale. Its concentration in the
upper mixed layer of the S and N Atlantic (Figure 1), Indian, and N Pacific gyres is typically above
105 cells ml−1. For instance, Campbell et al. (1997) followed the abundance of Prochlorococcus on
a monthly basis for three consecutive years at the HOT station off Hawaii and determined that it
was fairly uniform above 100 m with a median concentration of 1.76 × 105 cell ml−1. However,
in the S Pacific gyre, an area as large as the Mediterranean Sea and likely the most oligotrophic
region of the world ocean (Claustre et al. 2008), Prochlorococcus abundance is comparatively low,
with estimated mean cell concentrations below 3 × 104 cells ml−1 in the upper 80 m (Grob et al.
2007) (Figure 1).

Analyses at the GYR station, near Easter Island (Figure 2a), of a diel cycle of ftsZ mRNA
levels—a gene involved in cell division—furthermore suggest that, near the surface, Prochlorococcus
populations are not synchronized by the light/dark cycle, revealing a perturbation of the cell cycle
(Figure 2c). Thus, we assume that those cells are growing more slowly than populations located at
station EGY, which exhibit a peak of ftsZ expression at the end of the day (Figure 2c), as expected
(Holtzendorff et al. 2002). Unfortunately, no direct measurements of Prochlorococcus growth rates,
which would confirm this hypothesis, have been reported thus far for this region. It must be
stressed that Prochlorococcus concentrations integrated over the water column are not significantly
lower in the S Pacific gyre than in other gyres (∼1.6 × 1013 cells m−2, a comparable value to that
found in the S Atlantic at a similar latitude) because Prochlorococcus cells are very abundant at depths
to 200 m, with a density maximum at 120 m (Figure 1). However, the integrated productivity of
Prochlorococcus in the S Pacific gyre is likely lower than in other areas. Bulk measurements indeed
showed that integrated productivity in this gyre (154–203 mg C m−2 day−1) is among the lowest
ever reported in comparable marine ecosystems (Van Wambeke et al. 2008).
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tChla: total
concentration of
chlorophyll a (in
μg L−1)

LL: low-light-adapted

HL:
high-light-adapted

ITS: 16S-23S
ribosomal DNA
internal transcribed
spacer

The low abundance of Prochlorococcus in the S Pacific mixed layer was possibly linked to par-
ticularly severe nitrogen deficiency in this region, since iron limitation was evidenced only at
the border of the gyre (Behrenfeld & Kolber 1999, Bonnet et al. 2007). Other gyres are also
nutrient-depleted but must be re-enriched by aeolian inputs from continental deserts frequently
enough to sustain active growth of their tiniest photosynthetic inhabitants (Neuer et al. 2004). In
contrast, in the S Pacific gyre, aeolian inputs are almost nil year-round and, surprisingly, Easter
Island is apparently too small to have any notable “island effect,” i.e., it seems not to contribute
significantly in the nutrient enrichment of this oceanic area. UV radiation penetrates very deeply
into the water column in this region (Morel et al. 2007) and could also be a contributing factor to
the observed Prochlorococcus population growth inhibition. However, this is likely a consequence
rather than a cause of the low Chl biomass encountered in this part of the world ocean.

Polovina et al. (2008) have recently shown that the surface of oceanic areas exhibiting the
lowest chlorophyll concentrations (i.e., below 0.07 μg L−1) is rapidly expanding (Figure 2a), at
an annual rate varying between 0.8 and 4.3%, depending on the gyre. These authors assumed that
this phenomenon was a direct consequence of global warming, since surface water temperature
concomitantly increased over the 9-year period examined, leading to a strong reinforcement of
vertical stratification. It follows that the global productivity of the oceans is decreasing fairly
rapidly. One may wonder if this phenomenon will consequently induce an increase of the relative
contribution of Prochlorococcus to global productivity. Surprisingly, the answer is not necessarily
yes, at least for the S Pacific. Indeed, an analysis of the pigment data from the Biosope cruise, which
sampled a very large Chl gradient from the Marquesas Islands to the Chilean coast (Figure 2a),
revealed that the contribution of Prochlorococcus to the total Chl biomass (tChla) of (sub)surface
waters with chlorophyll below 0.03 μg L−1 is generally lower than 25% (Figure 2b). The ratio of
Chl a2 to tChla can exceed 50% but only between 0.035 and 0.2 μg L−1 tChla. Above this value,
Chl a2 concentration—which is directly related to densities of Prochlorococcus cells (see insert in
Figure 2b)—can still be high, but the contribution of larger sized phytoplankton groups to tChla
becomes predominant. Nevertheless, even if global warming may indirectly provoke a decrease
of Prochlorococcus contribution to the biomass and productivity in the S Pacific gyre (and possibly
other gyres), it will also likely induce an expansion of the distribution of this key cyanobacterium
toward higher latitudes in all oceans, so that its global contribution to the carbon cycle will most
certainly increase in the near future.

ECOTYPIC DIFFERENTIATION

The presence of low- and high-light-adapted (hereafter LL and HL) ecotypes in Prochlorococcus
was first suggested by flow cytometry evidence indicating bimodal populations in the red (Chl)
fluorescence signal of cells from subsurface waters off Hawaii (Campbell & Vaulot 1993); this was
later confirmed by physically sorting cells of each subpopulation and growing them independently
(Moore et al. 1998). Isolates obtained from such sorted cells showed distinct light absorption
properties due to differing (divinyl-) Chl a to b ratios as well as shifted growth irradiance maxima,
with LL cells growing and photosynthesizing at (low) irradiances that could not support growth of
HL cells, and conversely. These physiological discrepancies were further supported by significant
differences at the genetic level, with HL strains clustering tightly together in 16S rRNA or 16S-
23S ribosomal DNA internal transcribed spacer (ITS) trees, well apart from the phylogenetically
more variable LL strains (Moore et al. 1998, Rocap et al. 2002, West & Scanlan 1999).

Since these early observations, several more Prochlorococcus strains have been isolated, allowing
us to refine the initial picture. It is now clear that the HL group is the most recently evolved and
comprises at least two main subclades, often called HLI and HLII (West & Scanlan 1999). These
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Ecotype: a genetically
and physiologically
unique population that
is adapted to its local
environment

have also been termed eMED4 and eMIT9312, respectively, where the prefix “e” is meant for
“ecotype” and the following name is the type strain of the corresponding subclade (Ahlgren et al.
2006, Johnson et al. 2006, Zinser et al. 2006). Members from these two subclades/ecotypes were
recently shown by quantitative polymerase chain reaction (qPCR) to have differential geographical
distributions along a meridional transect in the Atlantic Ocean from SW Ireland to a station off the
Argentina coast (AMT13 cruise; Johnson et al. 2006). HLII was found as the dominant ecotype in
the upper mixed layer of stratified waters located between approximately 30◦N and 30◦S, whereas
HLI populations dominated in moderately stratified or fully mixed waters at higher latitude
(∼30–40◦S and 30–45◦N) (Figure 3). These latitudinal distribution patterns were globally consis-
tent with those observed using a dot blot hybridization approach during another Atlantic Merid-
ional Transect (AMT) cruise (AMT15; Zwirglmaier et al. 2007) as well as during a circumnaviga-
tion in the Southern Hemisphere (BEAGLE cruise), where only surface samples were retrieved
from the S Pacific, Atlantic, and Indian oceans in winter, late spring, and summer, respectively
(Bouman et al. 2006). The differential distribution of HL ecotypes also applies to regional seas,
since the Mediterranean Sea was found to be dominated by HLI (Garczarek et al. 2007), whereas
the Gulf of Aqaba (Northern Red Sea) is populated by HLII (Zwirglmaier et al. 2008).

Johnson et al. (2006) compared the temperature requirements of HLI and HLII strains and
showed that the former could grow at temperatures as low as 11–15◦C, whilst the latter could not.
In contrast, HLII strains grew generally faster than HLI strains at high temperatures and still grew
at 30◦C, a temperature incompatible with the growth of HLI strains. Together with the differential
distribution patterns, these data convincingly show that HLI and HLII truly correspond to differ-
ent ecotypes adapted to the same light niche but distinct temperature niches. It must be stressed
that, on a global scale, HLII are much more abundant than HLI, and this has somehow translated
into a much larger number of HLII than HLI strains in culture collections (Rocap et al. 2002).

LL strains can also be separated into a number of clades, based on 16S rRNA or ITS phylo-
genies, and those clades were again assumed to correspond to as many ecotypes (Ahlgren et al.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
(a) Expansion of S Pacific areas with lowest Chl a content in surface. Gray color represents the areas that
exhibited surface Chl a concentrations ≤0.07 μg L−1 in both August 1998/99 and August 2005/06. Blue and
red colors represent the extent of areas that had surface Chl a concentrations ≤0.07 μg L−1 only in August
1998/99 and only in August 2005/06, respectively. In the S Pacific Ocean, these low-Chl areas are expanding
at an average 2.9% per year (adapted with permission from Polovina et al. 2008). The ∼8000 km transect
and main stations of the Biosope cruise from Tahiti to the Chilean coast are also shown on the map (MAR,
HNLC, GYR, EGYR, and UPW correspond to stations sampled near the Marquesas Islands, in the high
nutrient–low chlorophyll region, inside the gyre, east of the gyre and in the upwelling, respectively; see
Claustre et al. 2008 for details). (b) Variation of the ratio of the Prochlorococcus-specific divinyl-Chl a (Chl a2)
to total Chl a (tChl a), as measured by high-pressure liquid chromatography (HPLC) analysis in the upper
mixed layer along the Biosope transect. Note that the values >0.5 μg L−1 tChl a have been omitted for
readability since Chl a2 is generally undetectable in these areas, and that all samples showing a nil Chl a2 to
tChl a ratio are located east of the EGYR station. The dashed line represents the 0.07 μg L−1 threshold used
by Polovina et al. (2008). The insert represents the relationship between Prochlorococcus cell concentration (as
measured by flow cytometry) and the Chl a2 concentration in seawater. Note that data for the MAR station
do not follow the general trend (see Grob et al. 2007). Pigment data were obtained courtesy of J. Ras and H.
Claustre. (c) Diel rhythm of the ftsZ gene expression at stations GYR and EGYR of the Biosope cruise, as
measured by quantitative polymerase chain reaction (qPCR) (see Holtzendorff et al. 2002 for technical
details). The rnpB gene was used as an internal standard to normalize the relative transcript level as described
in Six et al. (2007a). All data on the graph are relative to the expression level at 5 am. The two bars on top of
the figure indicate the length of the light period at each station, using the same color code as that of the
corresponding bar charts.
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Figure 3
Schematic representation of typical vertical distributions of the four main Prochlorococcus ecotypes at low and
high latitudes in the Atlantic Ocean. This drawing is based on real data from Johnson et al. (2006) at AMT13
cruise stations 57 (23◦ 54◦S, 25◦W) and 69 (36◦ 24◦S, 37◦ 42◦W). Each Prochlorococcus cell on the graph
symbolizes one order of magnitude of the population cell concentration in nature, i.e., 1 cell corresponds to
10–99 cells mL−1, 2 cells to 100–999 cells mL−1, 3 cells to 1000–9999 cells mL−1, etc.

AMT: Atlantic
Meridional Transect

2006, Johnson et al. 2006, Zinser et al. 2006). Two LL strains (MIT9303 and MIT9313), which
were originally sorted by flow cytometry based on their high red fluorescence (Moore et al. 1998),
are distinguishable from all other Prochlorococcus by their significantly larger cell and genome
sizes and higher GC% (Table 1). Phylogenetically, this group (called LLIV clade, or eMIT9313
ecotype) is located at the base of the Prochlorococcus radiation. In the field, it was found to be abun-
dant below the thermocline over the whole AMT13 transect, except at high latitudes (i.e., above
35◦S/40◦N), where it is virtually absent ( Johnson et al. 2006). The LLI (or eNATL2A; hereafter,
eNATL) ecotype, which was absent only at the southernmost stations of the transect, had a depth
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RFLP: restriction
fragment length
polymorphism; a
molecular method by
which the migration of
DNA fragments is
analyzed following
exposure to specific
restriction enzymes

OTU: operational
taxonomic unit; a
group of organisms
that is defined by its
sequence similarity

distribution intermediate between that of LLIV and HLII (i.e., just below the thermocline) in
warm, stratified waters between 25◦S and 40◦N, with rare incursions into surface waters; whereas
in mixed water columns at higher latitudes, it co-occurred with HLI in the whole euphotic layer,
including surface waters (Figure 2). Thus, although initially classified as an LL ecotype, based on
its fairly high divinyl Chl b to a ratio (Rocap et al. 2002), the eNATL group is in fact somehow
intermediate between HL and LL ecotypes, which is consistent with its position in phylogenetic
trees as the closest LL clade from the HL branch (Kettler et al. 2007) and with a number of
genomic characteristics shared with one type or the other (see below). In the Mediterranean Sea, a
study of Prochlorococcus diversity using restriction fragment length polymorphism (RFLP) analyses
of the pcb gene, encoding the main antenna protein, revealed the occurrence of a genotype with a
large depth distribution, which was tentatively attributed to eNATL (Garczarek et al. 2007). The
distributions of two other ecotypes, eSS120 (LLII) and eMIT9211 (LLIII), were also analyzed by
qPCR (Ahlgren et al. 2006, Johnson et al. 2006, Zinser et al. 2006) and both were found to be
scarce at all stations examined. However, this should likely be re-examined since qPCR primers
used for these two clades were both designed based on a single sequence (Ahlgren et al. 2006).

As already stated, the diversity of the LL group as a whole is much wider than that of the HL
group. Since there are fewer LL strains than HL strains in culture collections (Rocap et al. 2002),
the diversity of the LL group is currently underestimated. To better assess the true diversity of
natural Prochlorococcus populations, Martiny et al. (2009c) recently cloned and sequenced a large
number of 16S-23S rRNA ITS regions at different depths from 10 sites in the Atlantic and Pacific
oceans. They found that, while most sequences were related to clades/ecotypes with cultured
representatives, there were numerous novel sublineages within each clade. Additionally, more than
23% of the sequences from deep samples belonged to a novel, still uncultured Prochlorococcus clade
(provisionally termed NC1), which was deeply branching within the LL group. Another study,
aimed at characterizing the diversity of marine picocyanobacteria from the oxygen minimum
zone in the eastern tropical Pacific using a T-RFLP analysis of the ITS region, also revealed
the occurrence of two novel uncultivated clades, tentatively called LLV and LLVI (P. Lavin,
B. Gonsalez, J.F. Santibanez, D.J. Scanlan, O. Ulloa, unpublished paper). Together with LLIV
clade members, they contributed to ∼90% of the Prochlorococcus diversity in the low-oxygen layer.
Consistent with their ecology, both LLV and LLVI clades fall at the base of the Prochlorococcus
radiation in ITS phylogenies in a branch shared with LLIV strains, and it is quite possible that
they also possess a fairly large genome.

There is considerable microdiversity within Prochlorococcus ecotypes. In the Mediterranean
Sea, Garczarek et al. (2007) showed that there were virtually no identical sequences—even taking
the PCR error rate into account—in pcb gene clone libraries. In contrast, very similar RFLP
patterns of HaeIII-digested pcb genes could be found at given depths of very distant stations,
even though these patterns varied extensively with depth at any given station. Thus, while pcb
gene sequences provided information on the genotypic diversity of Prochlorococcus populations,
RFLP patterns corresponded to an intermediate degree of genetic diversity between genotype
and ecotype. The delimitation between these two levels is therefore delicate to clearly assign.
Martiny et al. (2009c) found that when an operational taxonomic unit (OTU) was defined as a
group of Prochlorococcus cells exhibiting 90% or more similarity of the ITS sequence, there were
only 1–5 OTUs in surface and mid-depth samples (though more in deep samples), whereas with
a more stringent definition (e.g., >97% similarity), the number of OTUs increased significantly
in most samples and rarefaction curves did not saturate. Community composition was correlated
to dispersal time only when OTUs were defined at a very high cut-off value (99.5% similarity),
suggesting that Prochlorococcus cells may evolve faster than currents can mix them, creating local
microdiversity.
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Photosystems:
protein complexes
made of several
subunits that are
converting the
electromagnetic
energy from sun into
chemical energy usable
by the cell

GENOMICS AND EVOLUTION

Specific Features of the Prochlorococcus Genus

Phylogenetic analyses using a number of genes (16S rRNA, rpoC1, ntcA) or intergenic regions (ITS,
petB-D) (see, e.g., Palenik 1994, Penno et al. 2006, Rocap et al. 2002, Urbach et al. 1998) converge
to show that (a) marine picocyanobacteria (i.e., Prochlorococcus and Synechococcus) form a branch
well separated from all other cyanobacteria, including freshwater Synechococcus, but also from other
marine planktonic cyanobacteria of larger cell size, such as Crocosphaera and Trichodesmium, and
(b) Prochlorococcus constitutes a monophyletic group within the marine Synechococcus radiation. The
differentiation of the Prochlorococcus lineage involved some founder events unifying all members
of this genus. These include the replacement of the large, extrinsic antenna complexes (phyco-
bilisomes) still found in extant marine Synechococcus (see Six et al. 2007b for a review) by com-
pact antennae located within thylakoid membranes in direct contact with photosystems (PSs)
(Bibby et al. 2003, Garczarek et al. 2001, LaRoche et al. 1996). These complexes are composed of
Chl-binding Pcb proteins, which are strongly related to the iron stress-induced protein IsiA. The
latter was shown to form an 18-protein ring around PS I trimers in freshwater cyanobacteria
grown under iron deplete (Fe-) conditions (Bibby et al. 2001a, Boekema et al. 2001) and a similar
structure has been described in the LL Prochlorococcus strain MIT9313 under Fe- only and in SS120
under both Fe+ and Fe- conditions (Bibby et al. 2003, Bibby et al. 2001b).

In the early stages of the differentiation of the Prochlorococcus genus, the gene encoding this PSI-
associated Pcb protein must have been duplicated and the product of one of the two gene copies
evolved to become PS II–specific, an event that also occurred independently in the two other green
oxyphotobacteria (often improperly called prochlorophytes) Prochlorothrix and Prochloron, as well as
in the Chl d–containing prokaryote Acaryochloris (see Chen & Bibby 2005, Partensky & Garczarek
2003 for reviews). Such antenna exchange induced a drastic change in absorption properties of
the Prochlorococcus cells, with the acquisition of divinyl derivatives of Chl a and b (so-called Chl
a2 and b2; Goericke & Repeta 1992). With their unique suite of pigments, Prochlorococcus cells are
highly specialized for the capture of blue wavelengths prevailing in oligotrophic waters. Synthesis
of Chl b2 from Chl a2 is catalyzed by a Prochlorococcus-specific Chl a oxygenase (PcCao), which is
only distantly related to the Cao protein found in higher plants and other green oxychlorobacteria
(Satoh & Tanaka 2006). The presence of divinyl- instead of monovinyl-Chls has been suggested to
result from the loss of the 3,8-divinyl protochlorophyllide a (dvr) gene (Kettler et al. 2007, Nagata
et al. 2005), but several marine Synechococcus strains also seemingly lacking the dvr gene do produce
normal (monovinyl-) Chl a (Dufresne et al. 2008, Scanlan et al. 2009). All Prochlorococcus also have
a specific lycopene cyclase (CtrL-e) responsible for the synthesis of α-carotene (Hess et al. 2001,
Stickforth et al. 2003). Despite low amounts in the cell (Goericke & Repeta 1992, Moore et al.
1995, Partensky et al. 1993), this pigment must be important for the correct functioning of the
photosynthetic apparatus of Prochlorococcus.

In a recent comparison of 12 Prochlorococcus and 4 marine Synechococcus genomes, Kettler et al.
(2007) identified only 13 clusters of orthologs that were supposedly specific to the Prochlorococcus
genus. However, when adding 7 more marine Synechococcus genomes in the comparison, orthologs
of many of these genes were in fact retrieved in one or several Synechococcus strains. Table 2
lists genes that are present in all 12 published Prochlorococcus but none of the 11 Synechococcus se-
quences. Several of the orthologs listed by Kettler et al. (2007) are indeed Prochlorococcus-specific,
but sequences found in HL and LL strains were in fact fairly distantly related to each other (i.e.,
potentially have different functions, possibly linked to adaptation to their specific niches) and have
been placed in different clusters of orthologs by the clustering method used by Dufresne et al.
(2008). Other genes such as orthologs of PMM1027 are only found in Prochlorococcus, but not
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Table 2 List of Prochlorococcus-specific genes

Cyanorak
cluster
no.a

MED4 locus tag
in MoLb

MED4 locus
tag in

Genbankc
Gene
name Product References

173 PMED4 06771 PMM0627 pcb PSII-associated Pcb antenna protein Laroche et al. 1996,
Bibby et al. 2003

2331 PMED4 08941 PMM0808 PcCao Chlorophyll b synthase
(Chlorophyllide a oxygenase)

Nagata et al. 2005

9152d PMED4 06831 PMM0633 crtL-e Lycopene ε-cyclase Stickforth et al. 2003
3411 PMED4 06861 PMM0636 Isochorismatase-like hydrolase

superfamily
Kettler et al. 2007

2026 PMED4 12891 PMM1135 hli High-light-induced protein (HLIP) ≡ Cluster 10 in Bhaya
et al. 2002

2025 PMED4 15741 PMM1385 hli High-light-induced protein (HLIP) ≡ Clusters 12 + 19 in
Bhaya et al. 2002

3473 PMED4 11001 PMM0983 — Secreted protein (1 signal peptide predicted)         Kettler et al. 2007
3414 PMED4 07061 PMM0655 — Conserved hypothetical protein Kettler et al. 2007
2333 PMED4 11581 PMM1022 — Conserved hypothetical protein Kettler et al. 2007
2639 PMED4 12731 PMM1125 — Conserved hypothetical protein Kettler et al. 2007

aNumber of the cluster of orthologs in the Cyanorak database (http://www.sb-roscoff.fr/Phyto/cyanorak).
bLocus tag of the P. marinus MED4 sequence in the Microbes-on-Line database.
cLocus tag of the P. marinus MED4 sequence in the Genbank database.
dSequences of Prochlorococcus crtL-e, a lycopene cyclase that produces α-, β-, δ-, and ε-carotene when heterologously expressed in Escherichia coli
(Stickforth et al. 2003), cluster apart from sequences of Prochlorococcus crtL-b, a lycopene cyclase that forms only β-carotene (Cyanorak cluster no. 86).

in all strains. On the other hand, some genes that are known to be Prochlorococcus-specific were
not retrieved by the clustering program used by Kettler et al. (2007), e.g., PSII-specific pcb genes
or crtL-e, likely because they have phylogenetically close paralogs (namely, PSI-specific pcb and
crtL-b genes, respectively; see Garczarek et al. 2007, Stickforth et al. 2003) and the discrimina-
tion threshold was likely too stringent to split them apart. This observation suggests that Table
2 is probably not exhaustive and that more Prochlorococcus-specific core genes will be found in
future as a result of more refined genome comparisons. Also, some genes in Table 2 have no or
only broad predicted function and should be privileged targets for characterization, as this will
help determine new traits specifically acquired during the differentiation of the Prochlorococcus
genus.

Gene Loss Associated with the Differentiation of the Prochlorococcus Genus

One of the most striking events to have occurred during the evolution of the Prochlorococcus group
is certainly the extensive genome streamlining that has affected most lineages. It must be stressed
that Prochlorococcus is, with Candidatus Pelagibacter ubique, the first sequenced representative of
the most abundant marine bacterial group SAR11 (Giovannoni et al. 2005), the only free-living
organism known so far to have undergone such a genome reduction process, and this is likely
related to adaptation to oligotrophic conditions prevailing in oceanic gyres (Dufresne et al. 2005).
The first three Prochlorococcus strains to be sequenced (namely, the LL strains MIT9313 and SS120
and the HL strain MED4) showed widely different genome sizes (2.41, 1.75, and 1.66 Mbp,
respectively), which at first sight had suggested a progressive decrease of this feature during
Prochlorococcus evolution (Dufresne et al. 2005, Dufresne et al. 2003, Rocap et al. 2003). In fact,
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G+C%: percentage
of the genome content
composed of cytosine
(C) and guanine (G)

the recent availability of many complete genomes representing all cultivated clades (Table 1)
has shown that the only Prochlorococcus strains that have kept a relatively large genome size are
the LLIV strains MIT9303 and MIT9313, i.e., those two strains isolated by cell sorting and not
filtration (typically through 0.6 μm filters) coupled with serial dilutions, a method used for the
other Prochlorococcus strains (Chisholm et al. 1992, Moore et al. 2007, Partensky et al. 1993). LLIV
cells also exhibit larger cell dimensions and a ∼2.2-fold larger volume than other Prochlorococcus
(Ting et al. 2007). This suggests that cell volume is tightly linked to genome size and hence that
these two features likely decreased concomitantly during evolution. The genome characteristics
of LLIV strains resemble more those of marine Synechococcus—with which Prochlorococcus share a
common ancestor—than those of other Prochlorococcus strains. Interestingly, although much more
ancient and diversified, marine Synechococcus show a low variability of genome size (2.22–2.86 Mbp)
and GC content (52.5–66.0 G+C%) compared to Prochlorococcus (1.64–2.68 Mbp and 30.8–50.7
G + C%; Dufresne et al. 2008, Kettler et al. 2007), and thus, seemingly, no Synechococcus lineage
has undergone any significant genome streamlining.

Prior to the main streamlining process, which was associated with the occurrence of novel
ecotypes (see below), the differentiation of the Prochlorococcus genus itself already involved the loss
of a number of useful but dispensable core genes that were present in the genome of its last common
ancestor with marine Synechococcus. Kettler et al. (2007) retrieved 140 genes that were absent in 12
Prochlorococcus but present in 4 Synechococcus taken as a reference. This list shrunk to 70 genes when
Dufresne et al. (2008) compared 11 Synechococcus to 3 reference Prochlorococcus strains, so at least
half of the genes in the previous list were in fact accessory in Synechococcus genomes. The set of
Synechococcus-specific core genes (see Dufresne et al. 2008, add’l data file 1) will probably decrease
again as more marine picocyanobacteria genomes are included in the comparison; it comprises all
allophycocyanin and phycocyanin biosynthesis genes that became useless after the differentiation
of Pcb antenna complexes. More surprisingly, a number of other photosynthetic genes have also
been eliminated, including some genes involved in the carbon concentration mechanism, namely,
homologs of Synechocystis sp. PCC 6803 ndhD4 and ndhF4 involved in low-affinity CO2 uptake, the
CO2 hydration protein ChpX, and a putative carbonic anhydrase (Badger & Price 2003, Dufresne
et al. 2008). Also missing are the two subunits of the ferredoxin-thioredoxin reductase as well as
one specific ferredoxin and one thioredoxin, a set of genes that might be involved in the light-
mediated regulation of Calvin cycle enzymes (Dufresne et al. 2008). Prochlorococcus also possess
no psbA gene encoding the D1:2 isoform of the D1 protein, known to confer better resistance of
PSII to photoinhibition. Instead, 1 to 3 psbA copies found in Prochlorococcus strains all encode a
D1:1-like isoform (Garczarek et al. 2008).

Other metabolic pathways have also been affected by gene losses that occurred during the
early stages of the Prochlorococcus genus differentiation. For instance, all Prochlorococcus lack kaiA,
encoding one of the three components of the core oscillator of the circadian clock (Holtzendorff
et al. 2008). Interestingly, a short remnant of the kaiA gene is in fact found upstream from kaiB
in the LLIV strains, but this is likely a pseudogene since its predicted product (corresponding
to the C-terminus of the protein) lacks many amino acids conserved in other KaiA. Implications
of the lack of KaiA were studied in the HL Prochlorococcus strain PCC 9511 (Holtzendorff et al.
2008). It was shown to result in a complete loss (within 24 h) of the synchronization of the
DNA replication timing and of the diel oscillation of the psbA gene expression (and probably
the whole transcriptome) when cells previously entrained under a light:dark cycle were shifted to
continuous light. It was concluded that Prochlorococcus likely possess a clock working on a 24-h basis
in an hourglass-like fashion, rather than as a self-sustained oscillator (Holtzendorff et al. 2008).

Although all Prochlorococcus strains sequenced so far lack all genes linked to nitrate metabolism
[including genes encoding the nitrate transporter NrtP (a.k.a. NapA), those encoding the nitrate
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reductase NarB, and seven genes involved in the biosynthesis of a molybdenum cofactor of nitrate
reductase], these genes are not present in the Synechococcus-specific core set. Indeed, one Syne-
chococcus strain (RS9917) out of eleven sequenced ones also lacks this whole suite of genes, which
was most likely present in the common ancestor of Prochlorococcus and Synechococcus. In fact, Casey
et al. (2007) showed that Prochlorococcus cells sorted from deep populations in the Sargasso Sea
displayed some specific NO3

− uptake, suggesting that these natural populations may have kept (or
reacquired by lateral transfer?) nitrate metabolism genes. Recently, Martiny et al. (2009b) found
direct evidence of nitrate assimilation genes in uncultured Prochlorococcus by screening metagenome
databases from surface oceanic waters.

Genes encoding nitrite reductase (NirA), its siroheme cofactor (CobA, a.k.a. CysG), and the
putative nitrite transporter FocA, i.e., the minimal gene set for nitrite uptake and assimilation,
have been maintained in four out of the six LL Prochlorococcus strains (MIT9313, MIT9303, and
the two NATL strains). All other strains rely only on ammonium and organic nitrogen forms (urea,
amino acids, and sometimes cyanate), as suggested by their nitrogen-related gene set and/or by
growth experiments (Mary et al. 2008, Moore et al. 2002).

Genome Streamlining Associated with Ecotypic Differentiation

As mentioned above, the actual genome streamlining process seemingly started just after the
differentiation of the LLIV branch from the common ancestor of all other Prochlorococcus lineages.
Based on an estimated genome size of 2.5 Mbp for the ancestral Prochlorococcus genome (i.e.,
equivalent to the average size of extant Synechococcus and Prochlorococcus LLIV genomes) and a gene
density of 1 gene every 874 bp (i.e., the average value for sequenced Prochlorococcus), one may assess
the total gene loss as ∼930 genes for HL and LLII/III strains, i.e., approximately one-third of the
hypothetical ancestral genome.

However, only 130 genes are present both in all sequenced marine Synechococcus and
in LLIV strains but are absent from all other Prochlorococcus genomes (see Supplemental
Table 1; follow the Supplemental Material link from the Annual Reviews home page at
http://www.annualreviews.org). This implies that while all these lineages have undergone mas-
sive gene losses, different lineages must have lost distinct sets of genes. Among the genes lacking in
all streamlined Prochlorococcus genomes, the most notable are a number of DNA repair genes (see
Table 3 and corresponding discussion below), two genes ( psbU/V) involved in the stabilization of
the PS II oxygen-evolving complex, three genes encoding the subunits of the glycolate oxidase (i.e.,
a complex involved in photorespiration), and eight genes coding two distinct ABC transporters
(including a Ggt homolog) that are probably used for the uptake of compatible solutes available
in the immediate cell environment or to prevent leakage of accumulated sucrose (Scanlan et al.
2009).

It must be stressed that even if gene loss has clearly been the dominant process during evolution
of these streamlined genomes, all of them have also continuously (but at a slower pace) reacquired
genes by lateral transfer from other microorganisms co-occurring in their environment (Kettler
et al. 2007). Given the absence of plasmids in Prochlorococcus cells, most of these exchanges must
have proceeded via phages, though natural transformation cannot be excluded. Thus, in spite
of their much reduced size, a significant degree of variability in gene composition can be found
among reduced genomes, the so-called accessory or flexible genome accounting for approximately
one-third of the genome in the most streamlined HLI/II and LLII/III strains (Kettler et al. 2007).

Sets of genes specifically retained or acquired by given ecotypes likely play a crucial role
in adaptation to their particular niches. Examination of the set of genes present in HL but
not LL strains (and vice versa) can provide a first assessment of this ecotypic differentiation
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Transversions:
substitution of a purine
for a pyrimidine, or
vice versa

(Kettler et al. 2007, Rocap et al. 2003). However, the occurrence of the LLI ecotype/clade makes
the story more complex. With genome sizes approximating 1.85 Mbp, representing ∼250 genes
more than in other streamlined genomes, NATL strains stand somehow apart. This slightly larger
genome size and gene content is likely related in part to their intermediate (and hence more
variable) habitat in the field (Figure 3). Indeed, NATL strains display a number of genetic charac-
teristics that are otherwise either HL- or LL-specific. Among the characters they share with SS120
and MIT9211, NATL strains have a large number of pcb gene copies, encoding six PSII-associated
and one PSI-associated Pcb proteins, whereas HL strains have either one (in MED4) but most
often two pcb gene copies, one for each photosystem (Garczarek et al. 2007, Kettler et al. 2007).
Like all LL strains, NATL strains have also kept all genes necessary to synthesize a complete
phycoerythrin, whereas HL strains have kept only a small subset of these genes (Hess et al. 1996,
Hess et al. 2001, Hess et al. 1999, Steglich et al. 2003, Ting et al. 2001). The putative ecological
advantage for life at depth conferred by these two features is, however, not yet fully understood.

In contrast, NATL strains possess 41 high-light-induced protein (HLIP) genes (Kettler et al.
2007), i.e., many more than other LL strains (e.g., 6 in SS120 and 9 in MIT9313) but also signif-
icantly more than HL strains themselves (e.g., 22 in MED4, Bhaya et al. 2002; 24 in MIT9312,
Coleman et al. 2006). This very large number of hli genes most likely translates the need for
these cells to actively protect their photosystems, and especially the Pcb antennae that surround
them (Bibby et al. 2003, Bibby et al. 2001b), against the deleterious effects of high light and UV
stress when they are present in surface waters, notably at high latitude (Figure 3). By comparison,
none of the marine Synechococcus have more than 14 hli genes (Palenik et al. 2006), despite the
fact that they preferentially thrive in the upper mixed layer. Thus, phycobilisomes appear better
suited to dissipate excess photon energy than Pcb’s, likely because of their localization in the stro-
matic space, their ability to quickly disconnect from photosystems (Six et al. 2007a) and/or their
efficient coupling with the orange carotenoid protein (OCP), which was found to play a crucial
role in energy dissipation (Wilson et al. 2006). Many hli genes have seemingly been acquired by
lateral transfers via cyanophages (Coleman et al. 2006, Kettler et al. 2007), as suggested by the
fact that Prochlorococcus phages often contain hli genes (Lindell et al. 2004), whereas others have
been acquired by gene duplication. In MED4, for instance, a 4-hli gene cluster is found in two
copies (hli06–09 and hli16–19) in the genome, and these have exactly the same sequence at the
nucleotide level, suggesting that they result from a very recent duplication event (Bhaya et al.
2002).

The metabolic category in which one possibly finds the largest differentiation between the
different ecotypes is DNA replication, recombination, and repair (Table 3), and these discrepan-
cies have probably played a key role in genome evolution of the different ecotypes, as discussed
later in this review. A rapid examination of Table 3 shows that HL strains have preferentially
retained (or recruited) genes related to photolyases and DNA ligases, whereas true LL strains
possess a particularly large number of DNA helicases (besides the indispensable ones shared by all
genomes). Again, NATL strains appear to have a finger in every pie since they possess DNA repair
genes from both HL and LL ecotypes, plus one specific endonuclease VIII (Nei) homolog that
might confer them an additional protection against G:C to A:T transversions. This large DNA
repair gene set may translate the need of NATL strains for a particularly high level of protection
against DNA damages.

Photolyases are photoreactive enzymes involved in the repair of pyrimidine (mainly thymine)
dimers generated during exposure to UV radiation. Like MED4, NATL strains possess one true
photolyase—characterized by the presence of two chromophore-binding domains: namely, an N-
terminal 8-hydroxy-5-deazariboflavin domain and a C-terminal flavin adenine dinucleotide (FAD)
domain—one FAD monodomain protein, and one uncharacterized photolyase-related protein.
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Four out of six HL strains also possess an additional photolyase (or possibly a cryptochrome;
see Goosen & Moolenaar 2008). In true LL strains, photolyases have been replaced by pyrimidine
dimer DNA glycosylase, a (viral-like) nonphotoreactive analog of photolyases that has seemingly
been recruited by lateral transfer from phages (Goosen & Moolenaar 2008).

DNA ligases catalyze the joining of breaks in double-stranded DNA, utilizing either NAD+

or ATP as a cofactor. All LL strains (including NATL) possess a typical NAD+-dependent DNA
ligase (LigA). As in Thermus filiformis (Lee et al. 2000), this ligase comprises four domains: (a) a
large N-terminal domain involved in adenylation, (b) an oligomeric-binding (OB) fold involved
in DNA binding, (c) one domain constituted of a zinc finger motif and four helix-hairpin-helix
(HhH) motifs (also involved in DNA binding), and (d ) a BRCT domain—initially named after
the C-terminal domain of a breast cancer susceptibility protein—which acts as a phosphoprotein-
binding domain. A circular arrangement of these four domains in the closed conformation of the
protein creates a large hole that can accommodate a double-stranded DNA molecule (Lee et al.
2000).

HL strains share with NATL strains the presence of one or two short, putative open reading
frames comprising only the adenylation domain of a NAD+-dependent DNA ligase (Table 3).
Given the absence of any DNA-binding domain, it is not yet clear by what mechanism these
putative enzymes could bind to DNA in order to perform their catalytic function. HL strains also
possess two ATP-dependent DNA ligases, one found also in marine Synechococcus and the other
specific to these strains. Contrary to the previous ligases, these comprise, like their homologs in
viruses (Pascal 2008), both an adenylation domain and an OB domain—used to assist in formation
of the ligase-AMP intermediate—and therefore they should be fully functional on their own.

While the whole set of genes required in the nucleotide excision repair (NER) pathway—
including uvrABC, encoding the three subunits of the excinuclease; uvrD, encoding the ATP-
dependent DNA helicase; and polA, encoding DNA polymerase I—is present in all Prochlorococcus,
only a few enzymes of the methyl-directed mismatch (MMR) pathway, best characterized in
Escherichia coli (Li 2008), can be readily identified in Prochlorococcus genomes. Only a subset of HL
strains seems to possess a DNA mismatch endonuclease of very short patch repair (Vsr), a key
enzyme for the repair of methylated cytidines that can be mutated into thymines, leading to G:C
to A:T transversions. All LL strains possess genes encoding the two subunits of exonuclease VII,
an enzyme which in E. coli is one of the four nucleases of the MMR process involved in eliminating
mismatch-containing oligonucleotides. LL strains also possess two enzymes of the homologous
recombination pathway (RecJ, another exonuclease and a protein related to RecD). It is not yet
clear, given a habitat characterized by low photon fluxes and absence of UV light, why true LL
strains (i.e., members of LLII/III/IV clades) have kept a fairly large set of DNA repair genes.

Adaptation to Local Niches at the Genotype or Population Level

All adaptive processes described above are either common to the whole Prochlorococcus genus
or to a specific phototype (HL, eNATL, or true LL) and date back to the ancestors of these
different groups. However, other metabolic processes seem to have been acquired much more
recently. A well-documented case of recent adaptation is phosphorus (P) metabolism. Even though
P is indispensable to cell survival—and therefore some P genes are present in all Prochlorococcus
genomes, including those encoding the orthophosphate transport system PstABC and the cell wall–
associated phosphate-binding protein PstS—a wide range of strategies exists in these organisms for
scavenging, transporting, and assimilating the diverse forms of P (reviewed in Scanlan et al. 2009).
This translates in Prochlorococcus strains into a large variability in the content of genes involved in
P acquisition and regulation (Martiny et al. 2006, 2009a).

www.annualreviews.org • Prochlorococcus 321

A
nn

u.
 R

ev
. M

ar
in

e.
 S

ci
. 2

01
0.

2:
30

5-
33

1.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 M

A
SS

A
C

H
U

SE
T

T
S 

IN
ST

IT
U

T
E

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

04
/0

5/
10

. F
or

 p
er

so
na

l u
se

 o
nl

y.



ANRV399-MA02-12 ARI 9 November 2009 15:34

Genomic islands:
part of the genomes
with a hypervariable
gene content, which
may differ even
between very closely
related strains

For instance, MED4, a HLI strain isolated from the Mediterranean Sea, where P is notoriously
limiting (Moutin et al. 2002), possesses 15 more genes involved in P metabolism (e.g., phoA encod-
ing alkaline phosphatase, one porin gene involved in phosphate transport, and several regulation
genes such as phoB/R and ptrA) than MIT9515, a HLI strain isolated from the tropical Pacific,
a P replete area. Similar differences can be found among the different strains of the HLII clade
(Martiny et al. 2006). These comparisons have suggested a direct relationship between the num-
ber of genes related to P metabolism and the P availability in the environment in which strains
have been isolated. This interesting hypothesis was further confirmed by comparing metagenomic
datasets from environments exhibiting different local P concentrations (Martiny et al. 2006, 2009a;
Rusch et al. 2007). P-related genes were indeed much more numerous in regions displaying less
than 0.1 μM phosphate (Sargasso and Caribbean Seas) than in more P-rich areas (E Pacific and
Indian Oceans, Martiny et al. 2009a).

P-related genes are not distributed randomly within Prochlorococcus genomes. Most of them
occur in two regions with highly variable gene content, so-called genomic islands (Coleman et al.
2006, Kettler et al. 2007, Martiny et al. 2006). One island called ISL5 was first revealed by whole
genome comparison of HL strains MED4 and MIT9312 (Coleman et al. 2006). It was found to
contain several uncharacterized genes that are strongly upregulated during P starvation, suggesting
that they must have an important role in P metabolism. Other genes related to nutrition processes
can be found in genomic islands, such as genes involved in transport or assimilation of nitrate,
nitrite, amino acids, cyanate, or metal traces (Coleman et al. 2006, Kettler et al. 2007, Martiny
et al. 2009b). Islands also contain genes involved in a variety of other processes, such as light
stress response (e.g., most hli genes are found in genomic islands) or cell wall synthesis (e.g.,
glycosyltransferases or glycoside hydrolases). Indeed, it has been suggested that high variability of
cell wall composition may constitute an efficient strategy against phages or other predators that
often require specific recognition motifs or attachment sites (Kettler et al. 2007, Palenik et al.
2006). It is, however, worth noting that the majority of island genes, which are frequently unique
or shared by few strains, have no known function.

While Kettler et al. (2007) found that newly acquired genes are preferentially located in
islands in all streamlined Prochlorococcus genomes, they suggested that members of the LLIV
clade may have adopted another strategy for integrating laterally transferred genes into their
genomes, since their specific genes seemingly did not cluster into discernible islands. It must
be noted, however, that Dufresne et al. (2008) managed to predict the occurrence of at least 11
islands in the genome of the LLIV strain MIT9313 by applying a bioinformatics method, based
mainly on the deviation in tetranucleotide frequency, that proved successful in predicting islands
in marine Synechococcus genomes. Thus, use of the sequence alignment tool BLAST to directly
compare the LLIV genomes with field metagenomic data—when such data become available for
the niche occupied by this ecotype—will likely be necessary to solve this controversy. Indeed, this
approach proved very efficient to check for the validity of predicted island regions in both HL
Prochlorococcus and marine Synechococcus genomes since there is generally much less recruitment of
field gene fragments at the level of these islands than in conserved parts of the genomes (Dufresne
et al. 2008, Kettler et al. 2007, Rusch et al. 2007).

Lastly, many genes contained in islands have been shown to be differentially expressed under
a variety of conditions, including nutrient and light stresses, as well as during phage infection
(Coleman et al. 2006, Lindell et al. 2007, Martiny et al. 2006, Steglich et al. 2006). Altogether,
this implies that such genes must play a key role in the response to stresses that may appear in
various combinations depending on the local environment. However, the precise dynamics of ac-
quisition/loss of these specific genes and the mechanisms of specific inclusion into these particular
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regions of the genome is not yet known and constitutes one of the most exciting challenges of
modern microbial ecology.

Mechanisms Involved in Genome Streamlining

What factors were responsible for initiating the genome streamlining process that has affected
most Prochlorococcus lineages is still a controversial question. It has been suggested that small cell
size (and consequently small genome size) may be advantageous for life at depth, given that the cell-
surface-to-volume ratio increases as cell size decreases, optimizing absorption of incident photons
(Dufresne et al. 2005). Light absorption efficiency is also specifically improved for such tiny cells
as Prochlorococcus due to low probability of photon scattering (Morel et al. 1993). Prochlorococcus
genotypes with smaller cell and genome size could therefore have been favored by natural selection.
Nevertheless, with the evidence that one of the most (if not the most) abundant Prochlorococcus
populations at the bottom of the euphotic zone in extant oceans are representatives of the LLIV
ecotype/clade ( Johnson et al. 2006, Zinser et al. 2006), which have maintained a cell and genome
size similar to that of Synechococcus, this hypothesis apparently does not hold.

Another possible explanation for the initiation of genome reduction is a relaxation of the selec-
tion on a number of genes that became dispensable in the low-light niche. In particular, absence of
UV radiation in this niche may have allowed the degeneration and then elimination of some DNA
repair genes. All Prochlorococcus strains with a streamlined genome also have an unusually high AT
content (Table 1), and it has been hypothesized that this was related to the loss of one or several
gene(s) involved in the repair of G:C to A:T transversions (Dufresne et al. 2005, Rocap et al.
2003). There are apparently no (annotated) genes belonging to the DNA replication and repair
category among the 70 aforementioned Synechococcus-specific core genes, confirming that loss of
genes belonging to this category occurred only after differentiation of the Prochlorococcus LLIV
branch from its common ancestor with other Prochlorococcus lineages. At least seven genes involved
in DNA repair are present in the two LLIV strains, but not in any streamlined genome (Table 3).

Six of these genes also belong to the Synechococcus core genome and the seventh, a NUDIX
hydrolase, is missing in only one out of 11 Synechococcus. One of them, ybaZ, is related to the ada and
ogt genes, with which it was confounded in previous genome analyses (Dufresne et al. 2005, Marais
et al. 2008). Ada and Ogt methyltransferases, which are known to prevent G:C to A:T tranversions
in E. coli by reverting potentially mutagenic 6-O-methylguanine adducts into guanine (Rye et al.
2008), are in fact seemingly missing in all marine picocyanobacteria. The alkyltransferase-like
protein YbaZ does not have any alkyltransferase activity per se in E. coli but was suggested to tag
nucleotides affected by large 6-O-alkylguanine adducts (such as ethyl- or propylguanine) before
their excision by the nucleotide excision repair (NER) pathway (Mazon et al. 2009). Absence of
ybaZ in all streamlined Prochlorococcus may thus have caused a decrease in the capacity of the NER
pathway to eliminate these large, potentially mutagenic adducts, and possibly 6-O-methylguanine
as well, given the absence of Ada and Ogt homologs.

Another phenomenon, which occurred concomitantly with genome reduction and AT-
enrichment, was a global acceleration of the rate of evolution of protein-coding gene sequences,
with the HL strain MED4 showing a twofold higher rate than the LLII strain SS120, itself having
evolved twice as fast as the LLIV strain MIT9313 (Dufresne et al. 2005). This phenomenon,
revealed by comparing the set of protein-coding genes shared by these different strains, affected
most genes independently of their metabolic function. It has been suggested, though, that some
highly conserved photosynthetic genes, such as the photosystem core proteins, may have escaped
this general trend because natural selection acted to maintain the numerous and vital interactions
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occurring between and within the supramolecular complexes constituting the photosynthetic ap-
paratus (Shi et al. 2005). Similarly, the ribosomal RNA operon was not affected by the base
composition drift (Dufresne et al. 2005), as can be clearly visualized on global plots representing
GC content, where this region appears as a high GC% island in an ocean of high AT% nucleotides
(see Supplemental Figure 1; follow the Supplemental Material link from the Annual Reviews
home page at http://www.annualreviews.org).

Marais et al. (2008) proposed an interesting evolutionary scenario where loss of DNA repair
genes in some genotypes may have caused them to become mutator strains, i.e., strains that
have a much higher mutation rate than the rest of the population. Mutator strains may indeed
acquire selective advantages that could allow them to conquer a new niche and/or overgrow other
members of the population after a change in prevailing environmental conditions (Taddei et al.
1997). Although ybaZ is not yet known as a mutator (i.e., a gene which once inactivated provokes a
sudden increase of the mutation rate of the cell), ada and ogt have been shown to have this potential
in E. coli (Miller 1998) and we assume that ybaZ (and possibly some of the other missing DNA repair
genes listed in Table 3) may have it as well. Marais et al. (2008) designed a simple mathematical
model showing that for a very large population (as is the case for Prochlorococcus in the field), even
a modest increase in mutation rate is sufficient to obtain a significant genome reduction of the
total population over the long-term. For instance, they predicted that a 15% increase in mutation
rate would lead to a ∼33% decrease in genome size, equivalent to that assumed for the evolution
of streamlined genomes (see above).

Marais et al. (2008) also suggested that modern Prochlorococcus populations with streamlined
genomes may still possess high mutation rates. However, if this hypothesis were true, one would
expect to observe, as in obligate intracellular bacteria (Frank et al. 2002), the accumulation of
pseudogenes, i.e., genes with deleterious mutations and in the process of being eliminated. We
know, from having manually checked the annotation of hundreds of genes of marine picocyanobac-
teria, that streamlined genomes have in fact extremely few pseudogenes (compared to, e.g., the
LLIV strain MIT9313) and, in particular, very few genes interrupted by stop codons, which are
predicted to be very frequent in a context where G:C to A:T transversions are frequent (Oller
et al. 1993). Thus, if mutators ever occurred during Prochlorococcus evolution, we rather suggest
that there have been several independent episodes of occurrence of mutator allele(s), followed
each time by restoration of a lower mutation rate once the new population was adapted to its new
environment, as predicted by the classical mutator theory (Denamur et al. 2000).

The first mutator event, potentially involving the inactivation then elimination of ybaZ and a
number of other DNA repair genes, led to the occurrence of the LLII/III lineages. The triggering
factors involved here remain unclear since the preferred ecological niches of these strains in the
field—possibly located below that of the LLIV clade (see, e.g., Garczarek et al. 2007, Steglich
et al. 2003)—are not as yet precisely established. A second mutator event may have led to the
differentiation of the eNATL ecotype (LLI clade), allowing it to colonize a niche located higher
in the water column (Figure 3). It is worth noting, though, that we have identified only one
less (vertically inherited) DNA repair gene in LLI than in LLII/III strains (Table 3), a helicase
belonging to the superfamily II with unknown mutator potential. The last episode, which could
have been induced by the loss of several more DNA repair genes, may have occurred just before
the differentiation of the HL branch. Among them, mutY is known to have mild mutator effects
if inactivated in Bacillus anthracis (Zeibell et al. 2007).

Surprisingly, the last mutator episode seems to have had a notable effect on the GC content
of HL strains but not on their genome size (Table 1). This observation supports the assumption
that the genomes of modern Prochlorococcus HLI/II and LLII/III cells have reached a lower limit
for a free-living photosynthetic organism (Dufresne et al. 2003). For the eNATL ecotype, which
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is confronted with a more variable environment than its HLI/II and LLII/III/IV counterparts,
it is possible that selection for maintaining more vertically inherited genes useful for life in such
changing conditions is higher than in other streamlined genomes.

Besides acquisition of novel genes by lateral transfer, it has been recently suggested that
Prochlorococcus may also be able to cooperate with microorganisms living in its immediate environ-
ment. Indeed, Morris et al. (2008) have shown that co-occurring bacteria may help Prochlorococcus
cells survive oxidative stress by removing reactive oxygen species from the medium, a process
involving activity of catalases or catalase/peroxidases. These discoveries suggest that the evolution
of Prochlorococcus genomes cannot be considered apart from the surrounding metagenomes (i.e.,
the pool of genes accessible by lateral transfer) and the community of interacting organisms.

SUMMARY POINTS

1. With the increase of oligotrophic areas, the preferred niche of Prochlorococcus is glob-
ally increasing, thereby potentially enhancing its relative contribution to global ocean
productivity. However, in the S Pacific gyre, nutrient limitation in the upper layer is
seemingly too drastic for normal growth of Prochlorococcus populations.

2. Differentiation of the Prochlorococcus genus has involved more gene losses than creation.
However, the actual genome streamlining process began only after the differentiation of
the LLIV branch from the common ancestor of all other Prochlorococcus.

3. The dualistic concept of the HL and LL ecotypes that prevailed for many years in
the literature on Prochlorococcus proved oversimplistic. Indeed, the eNATL ecotype (or
LLI clade) definitely represents a third entity occupying an intermediate (more variable)
niche compared to its HL/true LL counterparts. This specificity clearly translates into
its genome composition, which gathers characteristics of the two other ecotypes.

4. The apparent dominance of the large genome-possessing LLIV ecotype at the bottom
of the euphotic zone suggests that, even though genome streamlining began in this low-
light/high-nutrient niche, a small cell and genome size is not an absolute requirement (nor
seemingly the best strategy) for life in such a niche. In contrast, the remarkable abundance
of HL populations in the upper, nutrient-poor areas of the world ocean shows that
genome streamlining proved a very efficient strategy for colonizing this particular niche,
in which Prochlorococcus always overgrows the much more ancient genus Synechococcus.
Indeed, genome minimalism can allow Prochlorococcus (or other oceanic microorganisms,
such as Candidatus Pelagibacter ubique) to propagate their genetic information with a
minimal consumption of energy and limiting nutrients, such as N or P.

5. Even the most streamlined Prochlorococcus genomes have kept some plasticity and may
adapt to changing conditions by recruiting genes (via phages or natural transformation)
from other members of the community. These transfers are preferentially directed toward
specific regions called genomic islands. Additionally, cooperative interactions with co-
occurring organisms have been observed.

6. Loss of DNA repair genes likely had a critical effect on Prochlorococcus genome evolution.
It has been proposed that disappearance of some of these genes created mutator strains,
exhibiting an increased evolutionary rate. We suggest here that this event may have
occurred several times during Prochlorococcus evolution.
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FUTURE ISSUES
Although 13 genomes from cultured Prochlorococcus strains are currently available (Table 1)
and have already brought remarkable insights about evolutionary processes in this genus
and differentiation mechanisms between major ecotypes, a number of burning questions
remain about this crucial component of the marine community, including the following:

1. Are LLII and LLIII ecotypes really minor components of the Prochlorococcus community
or have they merely been underestimated?

2. Are there many more LL Prochlorococcus lineages in the field than currently known,
as suggested by recent discoveries of novel uncultured lineages using metagenomics
approaches?

3. How can we reduce potential errors in generalizing to field Prochlorococcus populations the
results from comparative genome analyses based solely on cultured strains, as recently
evidenced, e.g., for nitrate assimilation?

4. What are the major molecular processes allowing lateral gene transfer between Prochloro-
coccus lineages as well as with other members of the microbial community and at which
rate do these exchanges occur?

5. Will Prochlorococcus ultimately adapt to the ultraoligotrophic conditions found in the
upper layer of the S Pacific ocean (e.g., after another mutator event)?
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