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Terminal restriction fragment length polymorphism (T-RFLP) analysis has the potential to be useful for
comparisons of complex bacterial communities, especially to detect changes in community structure in re-
sponse to different variables. To do this successfully, systematic variations have to be detected above method-
associated noise, by standardizing data sets and assigning confidence estimates to relationships detected. We
investigated the use of different standardizing methods in T-RFLP analysis of PCR-amplified 16S rRNA genes
to elucidate the similarities between the bacterial communities in 17 soil and sediment samples. We developed
a robust method for standardizing data sets that appeared to allow detection of similarities between complex
bacterial communities. We term this the variable percentage threshold method. We found that making
conclusions about the similarities of complex bacterial communities from T-RFLP profiles generated by a
single restriction enzyme (RE) may lead to erroneous conclusions. Instead, the use of multiple REs, each
individually, to generate multiple data sets allowed us to determine a confidence estimate for groupings of
apparently similar communities and at the same time minimized the effects of RE selection. In conjunction with
the variable percentage threshold method, this allowed us to make confident conclusions about the similarities
of the complex bacterial communities in the 17 different samples.

The 16S rRNA gene is the target of the majority of microbial
ecological surveys because of its usefulness as a prokaryotic
phylogenetic marker (17). Rapid community profiling tech-
niques that allow an insight into the range of 16S rRNA genes
present are being applied to a wide range of microbial habitats
(21). One of these community-profiling techniques, terminal
restriction fragment length polymorphism (T-RFLP), sepa-
rates sequence variants in a population of genes based on
differences in restriction endonuclease (RE) cut sites in differ-
ent alleles (19, 22, 25). Differences in the positions of RE cut
sites mean that restriction fragments of different lengths can be
generated from different alleles. By end labeling the amplified
products during PCR by using a fluorescently tagged primer,
each different allele is reduced to one end-labeled terminal
restriction fragment (T-RF), visualized as a peak on the result-
ing electrophoretically generated profile. When used in con-
junction with gene sequence information that allows prediction
of T-RF sizes and therefore assignment of identity to individ-
ual peaks in a profile, the technique can be an effective tool for
analyzing microbial communities (3, 6, 16, 20, 23, 24, 44).

The use of T-RFLP has, however, been seen by some to lack
the degree of resolution required for analyzing complex mi-
crobial communities, such as those found in soil (9–11, 30),

because of the difficulty in assigning accurate identity to each
T-RF in complex profiles of 16S rRNA genes. Individual soil
samples contain a large diversity of microorganisms, with re-
cent estimates suggesting that a gram of soil may contain many
thousands of different bacterial species (7). Each peak in a
profile generated from DNA extracted from a soil sample must
therefore represent multiple T-RFs of the same size originat-
ing from different 16S rRNA genes. This limitation was dem-
onstrated in a study of a manure-treated soil reported by Ses-
sitsch et al. (37), in which some T-RFs could have been
generated by members of at least three different bacterial
phyla. Data presented by Engebretson and Moyer (11) sug-
gested that a set of about 4,600 16S rRNA gene sequences
would generate T-RFLP profiles with a mean of 9.1 to 18.5
different sequences contributing to each T-RF, depending on
which of 18 different REs was selected. The inference that each
unique T-RF can be defined as an operational taxonomic unit
was tested, and it was found that “by choosing the appropriate
number and type of restriction endonucleases” the profiles
generated would “more accurately reflect the natural diversity
of microbial populations within a sampled community” (11). In
other investigations (33; C. A. Osborne and P. H. Janssen,
unpublished data), the use of different REs to generate mul-
tiple T-RFLP profiles for each sample was found to yield more
information that could then be used to determine if a sequence
type was present or absent from complex communities.

While assignment of identities may be uncertain, it does not
preclude the use of the technique to compare whole commu-
nities. Profiles generated from different soil samples could be
compared to assess the similarity of soil bacterial commu-
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nities, allowing spatial or temporal changes to be detected
without the need to know the identity of every peak in every
profile. This approach has been used to compare the effects
of physical and biotic factors on soil microbial communities
(4, 9, 18, 24, 42).

T-RFLP has been shown to be reproducible between PCR
replicates and gel runs (23, 30, 35). However, variations in the
amount of DNA loaded affect the profile, and this has been
dealt with by applying normalization procedures (2, 10, 30, 35).
There is, as yet, no agreed-upon method for normalizing sam-
ples with differing amounts of DNA, which would allow easy
comparison of profiles with different total amounts of fluores-
cent label (2). There is a need to distinguish between major
T-RFs that represent abundant members of the community
and minor T-RFs that may be detected when large amounts of
DNA are analyzed but may be below the detection limit when
small amounts of DNA are analyzed. An appropriate method
for calculating a threshold, baseline, or minimum fluorescence
cutoff needs to be determined. The application of such a
threshold is of utmost importance when the Sorensen-Dice
pairwise similarity coefficient (8, 40), or any similar measure
based on the presence or absence of peaks in each profile, is
the basis of comparison. In such studies, the presence of small
peaks that result as a consequence of noise or the amount of
DNA analyzed may have an impact on the conclusions drawn.

In this study, we compare two published threshold determi-
nation protocols (10, 35), with a novel approach to threshold
determination, and explore a means of assigning a confidence
value to similarities detected between different bacterial com-
munities, by creating more information for T-RFLP compari-
son from six separate REs. This study provides another per-
spective on the unresolved area of analyzing T-RFLP profiles
(15) and describes a simple but rigorous approach that allows
complex communities to be compared.

MATERIALS AND METHODS

Samples and DNA extraction. Fifteen soil and two sediment samples, collected
between June 1997 and November 2003, were frozen at �20°C within 24 h of
sample collection, after which total community DNA was extracted using the
protocol of O’Farrell and Janssen (27). The samples used were: A, marine
sediment from Williamstown Hatt Reserve seagrass bed; B, marine sediment
from below the Williamstown Anglers Club pier; C, rhizosphere soil from a
eucalypt in Wombat State Forest; D, rhizosphere soil from a pine tree on
Moonee Ponds Creek; E, soil from a vineyard at Bunyip; F, rhizosphere soil from
a camellia bush in Ascot Vale; G, soil from a heavily manured vegetable garden
in Bunyip; H, soil from a pasture (0 to 10 cm below ground) at Ellinbank; HL,
soil from a pasture (3 to 10 cm below ground) at Ellinbank; HR, roots and
associated soil from pasture grasses at Ellinbank; I, soil from a petrol- and
oil-contaminated grassed area in Ascot Vale; J, soil from a native grassland in
Sunbury; KB, soil from a forage brassica plot at Ginninderra; KW, soil from a
wheat plot at Ginninderra; L0, rhizosphere soil from a eucalypt on Moonee
Ponds Creek; L2, soil under grass (2 m away from sample L0) on Moonee Ponds
Creek; and L4, soil under grass (4 m away from sample L0) on Moonee Ponds
Creek. All but the two Ginninderra sites, which were located in the Australian
Capital Territory, were in Victoria, Australia.

Generation of T-RFLP profiles and data sets. T-RFLP profiles were generated
using the primers FAM27f (5�-GAGTTTGATCMTGGCTCAG-3�), labeled at
the 5� terminus with 6-carboxyfluorescein, and 519r (5�-GWATTACCGCGG
CKGCTG-3�) and otherwise followed the protocol of Sait et al. (35). Unincor-
porated primers and reaction components were removed using a Wizard SV Gel
and PCR Clean-Up System column (Promega, Annandale, New South Wales,
Australia) according to the manufacturer’s instructions. Approximately 100 ng of
purified PCR product was digested overnight, at the specified temperature, with
5 U of one of the following restriction endonucleases: BstUI, HaeIII, HhaI,

HinfI, MspI, or Sau96I (New England Biolabs, Inc., Beverly, Mass.). Digested
PCR products were then precipitated and analyzed on a model 377 DNA se-
quencer (Applied Biosystems, Foster City, Calif.) at the Australian Genome
Research Facility, Parkville, Victoria, Australia (35) to generate profiles of
fragments up to 530 nucleotides (nt) long.

A separate profile was generated for each sample with each of the six restric-
tion endonucleases. Each profile consisted of T-RFs that each had a reported
fragment length, in nucleotides, and a reported peak area of fluorescently la-
beled product, in fluorescence units (FU). The raw data set of fragment lengths
and corresponding peak areas obtained from the Genotyper software (Applied
Biosystems) was first compiled so that all T-RFs in each profile of the data set
were aligned with the T-RFs of the same inferred length (rounded to the nearest
nucleotide) in every other T-RFLP profile generated by that restriction endo-
nuclease.

All of the profiles generated with any one RE constituted a data set. The
fluorescence integrated under any one peak is referred to as the area of that
peak, and the total area for any one profile is the sum of the areas of all of the
peaks excluding those generated by fragments of less than 30 nt or greater than
500 nt. To standardize data sets, small peaks that may have been detected in a
profile as a result of loading large amounts of DNA were removed by application
of a threshold area. Peaks with an area smaller than this threshold area were
removed from the data set, using three different standardization methods: the
constant percentage threshold, the constant baseline threshold, and the variable
percentage threshold.

Constant percentage threshold calculations. Sait et al. (35) determined the
threshold area for a data set by applying increasing area thresholds, as percent-
ages of the total area on each trace, until the minimum percentage that resulted
in independence of the number of peaks remaining in each profile and the total
area of each profile before threshold application was found. This standardization
method is referred to as the constant percentage threshold calculation. All peaks
that contributed less than this constant percentage threshold to any profile within
a data set were removed before analyzing relationships between the profiles in
the data set. A constant percentage threshold value was determined for each data
set (referred to as constant percentage [different]) and also by combining all the
profiles in all six data sets into a global data set to calculate a global constant
percentage (referred to as constant percentage [global]).

Constant baseline threshold calculations. The second method for standard-
ization was the constant baseline threshold calculation of Dunbar et al. (10),
applied to peak areas. The total areas in all of the profiles in a data set were
normalized to the same value as that of the profile having the smallest total area,
and then all of the peaks in each trace were reduced proportionally by the factor
required to yield that normalized total area. The first constant baseline threshold
was set as the smallest peak area detected in the unmanipulated data sets (rounded
up to 50 fluorescence units), and peaks with an area equal to or smaller than this
were removed from profiles after normalization (referred to as constant baseline [50
FU]), before analyzing relationships between traces in the data set. A second analysis
was performed on data sets where the constant baseline threshold was set at 100
fluorescence units (referred to as constant baseline [100 FU]).

Variable percentage threshold calculations. The third method for standard-
ization was termed the variable percentage threshold method. The total area of
each profile was divided by different values (divisors) to yield numbers that were
used as percentage thresholds. For each divisor, all peaks that contributed less
than the percentage threshold calculated for that profile were removed. Then,
for each divisor, the remaining number of peaks was plotted against the total
area, so that each profile contributed one point on that plot. We have found that,
sometimes, if there is very little variation in the total area of the profiles, there
is no detectable relationship between the number of peaks and the total area, and
no threshold needs to be applied (M. Sait and P. H. Janssen, unpublished data).
If standardization is required, a useful divisor to start with is 1,000 times the
mean total area for the data set. Different divisors were then tested, and the
divisor that resulted in the weakest relationship between the number of peaks
remaining and the initial total area was considered to be the optimal divisor
(Fig. 1). The unique percentage threshold value for each profile was calculated
by dividing the total area of that profile by the optimal divisor. Peaks that
contributed less than that percentage threshold were removed from that profile
before analyzing relationships between traces in the data set.

Comparison of profiles. Matrices of Sorensen-Dice pairwise similarity coeffi-
cients (8, 40) were calculated for all possible comparisons of profiles within a
data set using a program written in the C�� programming language. These
similarities were converted to distances, where distance � 1 � similarity, to
produce distance matrices. These matrices were represented graphically as den-
drograms using the Fitch-Margoliash least-squares (14) and neighbor-joining
(36) algorithms in PHYLIP (13). Consensus dendrograms were generated from
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the six data sets using the CONSENSE program in PHYLIP, and the consensus
values reported are the numbers of REs that generated coherent clusters of
samples. Shannon-Wiener diversity indices (41) were calculated using the peak
areas, expressed as a proportion of the total area, as measures of abundance.

Multivariate statistical analysis. Matrices of Sorensen-Dice similarity coeffi-
cients were generated for each T-RFLP data set from each RE and for each
threshold calculation procedure. A first-stage nonmetric dimensional scaling
(MDS) plot was then derived from each of the similarity matrices. The second-
stage MDS (2sMDS) analysis was then used to examine similarities between each
of the first-stage MDS plots. For the second-stage analysis, a Spearman rank
correlation was computed between the corresponding elements of each pair of
first-stage similarity matrices. The resulting Spearman rank correlations then
became the elements of a second similarity matrix, which was used to generate
the 2sMDS plot. Each point on the 2sMDS represents a first-stage MDS plot and
therefore essentially provides a visual interpretation of the similarity between all
of the original MDS plots.

We also calculated a relative dispersion index for each data manipulation proce-
dure (5, 39). The dispersion index compares the average rank similarity across a
given group of samples. In our case, we defined each of the data manipulations or
REs as the sample groupings. For interpretation, the lower the dispersion index, the
tighter is the grouping of samples within the given treatment.

All multivariate statistical routines were carried out with the PRIMER 5
software package (Primer-E Ltd., Plymouth, United Kingdom).

RESULTS AND DISCUSSION

Experimental design. In this study, we used only one
method of determining the size of peaks (by area according
to Genotyper software outputs), one method of comparing
T-RFLP profiles (Sorensen-Dice similarity coefficients), and
two methods of representing the manipulated data sets (den-
drograms and 2sMDS). We tested how different ways of cal-
culating the threshold area and how the choice and number of

REs used can affect the conclusions drawn about the similarity
of samples. Peaks with areas smaller than the threshold area
are removed from the data set to produce a manipulated data
set. This is required to standardize profiles so that differences
due to sample loading, resulting in differences in sensitivity for
different samples, do not affect comparisons based on the pres-
ence or absence of peaks.

DNA was extracted from the 17 samples, and PCR products
were generated from all DNA samples. The pooled products
from two PCRs from each DNA template were separated into
six aliquots and digested using six different REs. To create
T-RFLP profiles that were similar to some of these, additional
PCRs were performed using three of the DNA samples (D, F,
and G), and these were also aliquoted and digested with the
same six REs. In this way, a total of 120 T-RFLP profiles were
generated. We chose REs that spanned the range of the num-
ber of T-RFs of 50 to 500 nt predicted for a set of about 4,600
16S rRNA gene sequences and therefore should produce pro-
files that vary in the number of sequences theoretically con-
tributing to any one peak (11).

To ensure that T-RFLP profiles more accurately repre-
sented the bacterial community of a sample and to reduce
method-associated noise, it has been suggested that the prod-
ucts from multiple PCRs from the same template be pooled to
minimize the effects of amplification bias in individual PCRs
(6) and that consensus data sets be generated from multiple
electrophoretic separations of the digestion products from one
sample and RE to minimize variations due to profile genera-
tion (10). However, for this study we relied on variations in
PCRs and electropherograms to generate less-than-ideal data
sets. We reasoned that such data sets would allow us to test the
effects of thresholds and choices of REs, since we knew that
the pairs of replicates (D and D�, F and F�, and G and G�) were
derived from the same communities. Analyses that resulted in
these replicates being deemed to be similar can therefore be
considered more useful than analyses that failed to recognize
replicates as being similar. This avoided a priori assumptions of
sample similarity to test analysis methods, which may not be
valid (15).

Similarities between raw T-RFLP profiles. The twenty pro-
files (17 samples and 3 extra replicates) generated with each
RE were compiled into one data set per RE. The similarity of
each pair of profiles within each data set was expressed as a
Sorensen-Dice pairwise similarity coefficient. These values
were then used to generate distances, and dendrograms were
constructed from these distance values to depict the similari-
ties between different profiles. Profiles that were similar to
each other grouped closely in these dendrograms. The samples
and replicates grouped differently in the analyses of different
raw data sets, so that few groupings were consistently found in
analyses of all six data sets, i.e., the use of different REs
generally resulted in different pairs of profiles being deemed to
be similar. For example, comparison of the data sets generated
using BstUI and MspI reveals that few groupings are shared
between the two (Fig. 2A and B). The two sediment samples
(A and B), the two Ginninderra agricultural soil samples (KB
and KW), and the two parkland soil samples separated by 2 m
(L2 and L4) did group together in the analyses of both data
sets. In fact, these three pairings were the only ones found
consistently in the analyses with all six REs (Fig. 3A).

FIG. 1. Estimation of an appropriate divisor for the calculation of
the variable percentage threshold for 20 profiles generated using
HinfI. The optimum divisor was 2 � 108, which resulted in the weakest
relationship between the total area on the original profiles and the
number of peaks remaining after application of the threshold using
that divisor. The curves were fitted as power functions. The divisors
shown are as follows: ‚, no divisor, i.e., unmanipulated data; }, 1 �
107; ƒ, 5 � 107; �, 1 � 108; �, 2 � 108; F, 3 � 108; E, 4 � 108; and
Œ, 5 � 108.
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Two of the replicate PCR pairs, D and D� and F and F�,
were paired only by four of the six REs, while the third repli-
cate pair, G and G�, paired in only one data set (Fig. 3A). The
only RE to group all three replicates in analyses of the raw data
sets was HaeIII. D and D� were not grouped by BstUI and
HhaI, but F and F� were not grouped by BstUI and Sau96I.
The different groupings of replicates meant that it was difficult
to be sure whether some of the groupings formed by nonrep-
licate samples were meaningful, and, even with HaeIII, it could
not be ruled out that some of the pairings of nonreplicates
detected might be fortuitous rather than reflective of real sim-
ilarities between the original bacterial communities.

Effects of different threshold calculations. We attempted to
standardize the data sets and so produce greater similarity
between the replicates. Three different methods were used to
calculate a threshold area value to remove minor peaks that
may have been detected purely as a result of the amount of
DNA applied to the separation gels. A constant percentage
(different) threshold (35) was applied to each data set from
each individual RE. In addition, this method was also used to
calculate a constant percentage (global) threshold area for all
of the data sets combined into one data set, so that one thresh-
old area was applied to all six data sets. Sait et al. (35) ex-
pressed the area under each peak as a percentage of the total
area for all of the peaks in that profile and determined the

minimum threshold as a percentage for the data set, so the
profiles have comparable numbers of peaks while still retaining
enough peaks to analyze the microbial community. Constant
baseline thresholds, based on the method of Dunbar et al. (10),
were applied to each data set from each RE, using the thresh-
old areas of 50 and 100 FU. Dunbar et al. (10) actually com-
pared peak heights, rather than area, but their method of
proportionally reducing the heights of each peak in larger
profiles and removing peaks that then fell below the threshold
can also be used on peak areas. The third method combined
elements of both of these published methods, and we term this
the variable percentage threshold method. A unique threshold
area, as a percentage of the total area, was calculated for each
trace in a way that is dependent on the total peak area for each
individual profile. A greater total peak area in any profile will
increase the threshold area value of the baseline for that pro-
file. This compensates for the increased sensitivity due to more
labeled product being present in that profile. The constant
percentage and variable percentage methods require enough
samples to allow a reasonable estimate of the relationship
between total peak area and the number of peaks in each
profile to be determined (Fig. 1).

The variable percentage threshold method appeared to be
the best for determining threshold values with these samples
because it grouped all three pairs of PCR replicates (D and D�,

FIG. 2. Examples of relationships between soil bacterial communities elucidated using T-RFLP analysis with different REs and data manip-
ulations. The panels display the differences calculated from Sorenson-Dice similarity coefficients. (A) Unmanipulated (raw) data generated using
BstUI; (B) unmanipulated (raw) data generated using MspI; (C) data generated using BstUI after application of the variable percentage threshold;
and (D) data generated using MspI after application of the variable percentage threshold. The samples are indicated by letter codes at the branch
termini, and the replicate samples are indicated as D�, F�, and G�. Bars represent a 10% difference.
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F and F�, and G and G�) in all six data sets generated with
different REs when the Sorensen-Dice similarity coefficient
was represented by the Fitch-Margoliash least-squares treeing
method (Fig. 3B and Table 1). The other methods of threshold
determination resulted in the replicates grouping together less
often. When the groupings were analyzed using the neighbor-
joining method of depicting the outcomes as trees, the constant
percentage (global) method resulted in the most consistent
grouping of replicates, but some of the other methods also
appeared satisfactory (Table 1). The variable percentage
threshold method also resulted in the largest number of REs
generating similar groupings between profiles generated from
different samples of all the methods used (Table 1). Groupings
uncovered in analyses generated using a number of different
REs are more likely to consist of truly similar samples than
groupings found using only one RE, indicating that this thresh-
old method may be better for standardizing data sets and

subsequently detecting true similarities between complex com-
munities.

MDS is a robust approach to examining community data
that has been used extensively to analyze data sets based on
macrofaunal community structures (5) and, more recently, to
analyze microbial community structures (32, 43). Here we used
an extended MDS approach, termed 2sMDS, as an additional
method to examine T-RFLP data for each RE and for each
threshold calculation procedure. To date, 2sMDS analysis has
been applied only to the study of marine benthic invertebrates
(28, 29, 38) but has proven to be very useful in allowing metas-
cale pattern analysis. Applying this technique to our data al-
lowed us to place our results within a robust statistical frame-
work. Each data point on second-stage ordination essentially
represents an MDS ordination plot for one of the REs and one
of the standardization procedures, and the position of each
point is determined by the similarity of that MDS plot to all

FIG. 3. Consensus dendrograms illustrating the number of times groupings of samples were recovered in analyses using six different REs,
indicated as a number at the nodes defining the clusters. Nodes without a number were recovered only once. (A) Analysis of the unmanipulated
(raw) data sets. (B) Analysis after the application of variable percentage thresholds to the data sets. The samples are indicated by letter codes at
the branch termini, and the replicate samples are indicated as D�, F�, and G�.

TABLE 1. Effects of different threshold methods on number of T-RFs remaining for analysis, consensus of groupings in cluster analyses,
and consistency of groupings in 2sMDS across the six data sets generated (one for each RE)

Threshold method
Mean no. of
T-RFs/profile

(SD) c

Mean consensus grouping of
three replicates (out of six REs)

Mean consensus grouping of
17 samples (out of six REs) Relative

dispersion index
in 2sMDS bFitch-

Margoliash a
Neighbor-
joining a

Fitch-
Margoliash

Neighbor-
joining

Original data 63 (13) 3.0 4.3 3.4 3.7 1.33
Constant percentage (different) 40 (17) 4.7 5.3 3.2 3.8 1.38
Constant percentage (global) 54 (10) 5.0 5.0 3.5 3.8 0.76
Constant baseline (50 FU) 61 (11) 3.3 4.3 3.1 3.4 1.10
Constant baseline (100 FU) 54 (10) 4.7 5.0 3.6 3.7 0.77
Variable percentage 55 (11) 6.0 5.0 4.1 3.8 0.66

a Fitch-Margoliash (14) and neighbor-joining (36) refer to the algorithms used to generate dendrograms from which the consensus values were calculated.
b From Fig. 4A; lower dispersion indices indicate greater agreement in the relationships uncovered by all six REs.
c n � 120.
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other plots. The most consistent grouping is indicated in such
plots by the smallest spread of points within a given treatment.

The variable percentage threshold method gave rise to the
most consistent grouping of the samples (Fig. 4A) and there-
fore represents the preferred approach to analyzing data. That
is, the relationship of the samples to each other as determined
by the six REs was most similar when the variable percentage
threshold was applied to standardize the data. The relative
dispersion index, a measure of the closeness of grouping, was
smallest for the variable percentage threshold method (Table
1). At the other extreme, the constant percentage (different)
threshold method (where each data set had its own unique
threshold value determined) gave rise to the least consistent
grouping of the samples (Fig. 4A) and had the largest relative
dispersion index (Table 1). These results are generally consis-
tent with the recovery of groupings of pairs of samples in
consensus dendrograms (Table 1). The constant percentage
(different) method resulted in a large loss of T-RFs (Table 1)
(see the supplemental material), and this loss of information,
and consequent simplification of the profiles, seems to have
resulted in less-accurate detection of similarities between com-
munities because the analyses are made on a small number of
characters (T-RFs). Since this method was nearly as poor as
the use of the raw data with no threshold, this suggests that
overmanipulation of the data must be avoided. The three

methods that resulted in the smallest dispersion all resulted in
intermediate numbers of peaks (mean of 54 or 55 peaks) re-
maining after application of thresholds.

To test the effect of suboptimal threshold values on the data,
and so the effects of under- and overmanipulating the data sets,
we applied different thresholds to the data sets and compared
the effects on the relative dispersion indices in 2sMDS. We
applied threshold values at 0.5, 1.0, 1.5, and 2.0 times the
optimal value that had been calculated using the variable per-
centage threshold method. As expected, the number of peaks
decreased more rapidly than remaining total area as the
threshold value increased (Fig. 5A and B), since application of
the threshold eliminated the smallest peaks. The dispersion
index decreased as the threshold value increased (Fig. 5C), but
the consensus of agreement between the six different REs was
greatest at the optimal threshold. In this instance, the disper-
sion indices are showing one outcome of steadily removing
peaks from a given data set. As rare or small peaks are steadily
removed from the data sets, the resultant data sets are becom-

FIG. 4. 2sMDS plots showing the relationships between data sets
generated with different REs after manipulation using different thresh-
old methods. (A) Effects of different threshold methods. Symbols: ■,
no threshold (raw, unmanipulated data); Œ, constant percentage (dif-
ferent) threshold; E, constant percentage (global) threshold; �, con-
stant baseline (50 FU) threshold; ‚, constant baseline (100 FU)
threshold; and F, variable percentage threshold. The data points in-
dicating the positions of the variable percentage results are bounded by
a dashed line. (B) Effects of different REs. Symbols: E, HaeIII; ■,
MspI; ‚, HinfI; �, Sau96I; Œ, HhaI; and F, BstUI.

FIG. 5. Effects of suboptimal (�1 and �1) thresholds relative to
the threshold calculated using the optimal divisor with the variable
percentage threshold method on (A) the mean area remaining, (B) the
number of T-RFs remaining after threshold application, (C) the dis-
persion index in 2sMDS, and (D) the mean consensus between the six
REs on the grouping of the 20 samples in clustering dendrograms,
after threshold application. The threshold calculated using the variable
percentage threshold is shown as 1.0 for all six data sets to allow direct
comparisons to be made; 0.0 represents the raw data sets without
threshold application. The vertical bars indicate one standard devia-
tion (SD) on either side of each mean. Each point represents 120
profiles.
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ing more similar; hence, there is less scatter with the ordina-
tions, seen here as smaller dispersion indices. The optimum
threshold identified by the variable percentage threshold
method therefore results in the highest level of agreement
between the different REs. Since we can expect that each RE
will tend to produce similar patterns when the starting com-
munity is similar but also that experimentally induced noise
will tend to obscure the true pattern of relationships between
samples, we can assume that the highest consensus values
occur when the optimum threshold is applied and a balance
between noise elimination and information retention is
achieved.

These outcomes suggest that the use of any method to cal-
culate a threshold area allows the subsequent analysis to detect
real groupings by eliminating noise. Overall, the variable per-
centage method appeared to be the most useful of the methods
tested, probably because of its ability to set an optimal thresh-
old area value.

Choice of restriction endonuclease. The profiles generated
by the different REs contained similar numbers of T-RFs, and
measures of diversity also suggested that the amounts of infor-
mation in the profiles were not greatly different when they
were generated using different REs (Table 2) (see the supple-
mental material). However, the 2sMDS ordinations plotted by
RE showed that individual enzymes can generate different
community patterns (Fig. 4B), as evident from the scatter of
the enzyme clustering throughout the 2sMDS (Table 2). It is
clear that data sets generated using some enzymes, for example
BstUI, are more strongly affected by the choice of threshold
method than others, such as those generated using HaeIII (Fig.
4B). It is important to note that REs that resulted in more
consistent groupings, like HaeIII and HinfI, did not generate
profiles that looked more similar to each other (Table 2);
instead, the relationships between samples were more consis-
tent when these REs were used, regardless of which standard-
ization method was used (Fig. 4B). This suggests that data sets
generated using some enzymes are less susceptible to noise. In
contrast, the choice of standardization method has a large
impact on the outcomes of analyses of data generated using
other REs. REs that generated profiles in which many small
peaks were common to most profiles and large peaks were

mainly unique should result in more differentiation of profiles
when increasing thresholds were applied, while REs that gen-
erated many large peaks that were common to most profiles
should be less sensitive to increasing thresholds. However,
there were no obvious differences in the distribution of peak
sizes in profiles generated using different REs (see the supple-
mental material). Instead, the distribution of the number of
larger peaks relative to smaller peaks was almost identical for
profiles generated with each of the six REs. When the six REs
are ranked by relative dispersion index across all threshold
methods (Table 2), there is no correlation with the character-
istics listed for the same REs by Engebretson and Moyer (11).
Other studies report sometimes-contradictory conclusions re-
garding the best REs in experimental comparisons (3, 6, 10, 20,
22, 34). We suggest that the analysis of data generated using
multiple REs reduces the likelihood of a lack of resolving
power due to RE selection.

Generation of confidence values using multiple REs. Com-
puter simulations of T-RFLP analyses have shown that the
choice and number of REs used affects the profile’s represen-
tation of the community, and the use of multiple REs was
suggested to allow a more accurate assignment of peaks to 16S
rRNA gene sequences (11). We have extended this by gener-
ating multiple data sets and constructing a consensus tree
depicting relationships from the results of the individual data
sets for six REs (Fig. 3). This allows an estimate of the confi-
dence of different groupings to be made. Many studies em-
ploying T-RFLP use only one RE. Conclusions about the sim-
ilarity of different samples could be attempted based on data
sets generated from just one RE. For example, profiles of
samples C and HL generated using BstUI appeared similar
(Fig. 2C), allowing a conclusion to be made that their bacterial
communities were similar. However, the consensus of the six
separate data sets indicates that this is likely to be an incorrect
conclusion (Fig. 3B), since these samples were found to be
similar in only two of the six data sets (generated with BstUI
and HinfI). This agrees with results found in a previous study
(9), where the combined data from REs were not consistent,
and indicates that conclusions about complex communities
based on T-RFLPs generated from just one RE may be er-
roneous.

Each peak in a T-RFLP profile generated from a complex
bacterial community such as those found in soils (11, 33) is
likely to represent more than one species. The use of different
REs will group these species together in different combinations
(into different peaks), so that each RE produces a different
simplified representation of the community. DNA from differ-
ent soils may generate the same-sized T-RF that originates
from different sets of 16S rRNA genes. These sets can be
expected to be distributed in different peaks if a different RE
is used. In our analyses, samples that were grouped together by
all six REs are therefore more likely to be truly similar, while
the confidence in groupings found in data sets generated by
fewer REs is lower. The use of multiple REs generates a
consensus value, which estimates a confidence level of the
grouping. This is different from using a bootstrap analysis to
generate confidence values for groups. During a bootstrap
analysis, a new data set is generated by sampling characters
randomly, with replacement, so that the resulting bootstrapped
data set is of the same size as the original, but with some

TABLE 2. Effect of RE choice on consistency of groupings in
2sMDS compared with information content measured as mean

number of T-RFs per profile, Shannon-Wiener diversity
indices, and mean difference between profiles

Restriction
endonuclease

Relative
dispersion
index in
2sMDSa

Mean no. of
T-RFs/profile

(SD)b

Shannon-
Wiener
diversity
indexb

Mean difference
between profiles

(SD)c

HaeIII 0.43 64 (10) 3.05 0.501 (0.105)
MspI 0.75 66 (12) 3.45 0.512 (0.122)
HinfI 0.79 60 (11) 3.26 0.582 (0.104)
Sau96I 1.31 68 (16) 3.50 0.545 (0.105)
HhaI 1.35 61 (9) 3.12 0.529 (0.090)
BstUI 1.39 61 (17) 3.12 0.535 (0.092)

a From Fig. 4B; lower dispersion indices indicate a higher degree of similarity
in the data sets after the application of different threshold methods.

b On unmanipulated data sets, n � 20 for each RE.
c Calculated from Sorensen-Dice similarity coefficients on the unmanipulated

data sets; n � 190 comparisons for each RE.

1276 OSBORNE ET AL. APPL. ENVIRON. MICROBIOL.



characters removed and others duplicated (12). The random
variation of the results from analyzing these bootstrapped data
sets is considered to be typical of the variation that might arise
when collecting new data sets. As such, it tests the size and
robustness of the data set. Our confidence values express the
actual consensus of multiple real data sets. This represents a
useful means of assessing the significance of any groupings
observed.

Although some studies applying T-RFLP to complex micro-
bial communities have used a number of different REs to
generate more information for sample comparisons (2–4, 6, 9,
10, 26, 34), this is the first study to generate consensus values
from the data generated using multiple REs. Ayala-del-Rı́o et
al. (1) initially tested a subset of samples with six different REs,
but carried out community analysis on profiles from two REs,
which were selected as the best. Within this study we have been
unable to determine criteria for selecting the best REs for
comparing complex microbial communities, and we believe the
information from all six REs is valuable in our community
analyses. Using six REs will also allow the detection of some
problems with T-RFLP, such as the generation of artifacts that
may occur during PCR (31).

Conclusions. The factors governing the effect of RE choice
are poorly understood, and the outcomes of computer-gener-
ated simulations (11) did not correlate well with the outcomes
of our studies on real samples. We conclude that the use of
multiple REs, employed individually, overcomes possible ef-
fects of RE choice on generating useful T-RFLP information
for complex bacterial communities. Our results suggest that
our variable percentage threshold method is a useful addition
to the limited range of standardization methods available, be-
cause it allows determination of an optimal threshold for each
profile, and so minimizes information loss. We also suggest
that generating multiple profiles using different REs for each
sample, and so giving confidence values for sample groupings,
may be a means of determining the significance of relation-
ships detected. We used six REs, but this could be varied. In
conjunction with pooling PCRs (6) and generating consensus
profiles from multiple separations (10), more confident inter-
pretation of T-RFLP analyses can be made. The consensus
approach could also be used with other gene profiling tech-
niques (21), where multiple profiles could be generated using
different primer sets, and consensus values generated as indi-
cators of confidence.
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