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Summary

Coastal ocean bacterioplankton control the flow of
dissolved organic carbon (DOC) from terrestrial and
oceanic sources into the marine food web, and regu-
late the release of inorganic carbon to atmospheric
and offshore reservoirs. While the fate of the chemi-
cally complex coastal DOC reservoir has long been
recognized as a critical feature of the global carbon
budget, it has been problematic to identify both the
compounds that serve as major conduits for carbon
flux and the roles of individual bacterioplankton
taxa in mediating that flux. Here we analyse random
libraries of expressed genes from a coastal bacterial
community to identify sequences representing
DOC-transporting proteins. Predicted substrates of
expressed transporter genes indicated that carboxy-
lic acids, compatible solutes, polyamines and lipids
may be key components of the biologically labile DOC
pool in coastal waters, in addition to canonical bac-
terial substrates such as amino acids, oligopeptides
and carbohydrates. Half of the expressed DOC trans-
porter sequences in this coastal ocean appeared to
originate from just eight taxa: Roseobacter, SAR11,
Flavobacteriales and five orders of y-Proteobacteria.
While all major taxa expressed transporter genes
for some DOC components (e.g. amino acids), there
were indications of specialization within the bacteri-
oplankton community for others (e.g. carbohydrates,
carboxylic acids and polyamines). Experimental
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manipulations of the natural DOC pool that increased
the concentration of phytoplankton- or vascular
plant-derived compounds invoked a readily measured
response in bacterial transporter gene expression.
This highly resolved view of the potential for carbon
flux into heterotrophic bacterioplankton cells identi-
fies possible bioreactive components of the coastal
DOC pool and highlights differing ecological roles in
carbon turnover for the resident bacterial taxa.

Introduction

Coastal ocean ecosystems process dissolved organic
carbon (DOC) from both terrestrial and marine sources,
making these complex and productive systems critical to
our understanding of the global carbon cycle (Hedges
etal, 1997). Bacterial processing of coastal DOC
remains a significant conceptual and analytical challenge,
however. Thousands of compounds make up the DOC
pool, each with different biological turnover rates (Cherrier
and Bauer, 2004) and many of which no longer resemble
the parent biomolecules from which they were formed
(Ogawa et al., 2001). This complex DOC pool is pro-
cessed by a diverse community of heterotrophic bacteri-
oplankton composed of hundreds of different taxa
(Giovannoni and Stingl, 2005) with varying ecological
strategies for the uptake and metabolism of organic
carbon (Cottrell and Kirchman, 2000; Mou et al., 2008).
Several methodologies can provide insights into bio-
logical turnover of DOC in marine waters. Approaches
that track changes in substrate concentrations over time
(Raymond and Bauer, 2000), or use radiotracers to esti-
mate turnover rates (i.e. the fraction of a compound trans-
formed per unit time) (Wright, 1978; Zubkov et al., 2008)
can measure fluxes of individual components of DOC into
bacterioplankton cells. These studies show important
roles for amino acids and monosaccharides (usually
glucose) in bacterially mediated DOC turnover; together,
these two compound classes can account for ~40% of
total carbon assimilation by bacterial cells (Kirchman,
2003). Approaches measuring DOC uptake at the single-
cell level (e.g. Ouverney and Fuhrman, 1999; Cottrell and
Kirchman, 2000; Mou et al., 2007) show that most marine
bacterioplankton are capable of transporting amino acids
and glucose (Malmstrom et al., 2005) and that phylum- or
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Table 1. Analysis statistics of bacterioplankton community transcript libraries.

Coastal 1 Coastal 2 Phyto-DOC VP-DOC
Number of unique reads 435 219 291 109 405 024 444 832
Average read length 186 186 157 206
Number of rRNAs 230 108 150 603 230 432 225 696
Number of potential proteins 205 108 140 506 174 592 219136
Number of RefSeq hits? 68 327 65 700 107 196 144 514
% RefSeq hits® 33 47 61 66
Number of COG hits® 40570 21133 70 981 88 621
% COG hits® 20 15 41 40

a. Criteria for annotation were E-value = 0.01, amino acid identity = 40% and overlapping length = 23 aa to the corresponding best hit. See
Experimental procedures for information on how these criteria were determined.

b. Expressed as a per cent of potential protein-encoding transcripts.

c. Criteria for annotation were E-value = 0.1, amino acid identity = 40% and overlapping length = 23 aa to the corresponding best hit.
Coastal 1 and 2 =unmanipulated coastal DOC; Phyto-DOC =amended with DOC derived from four strains of coastal phytoplankton;
VP-DOC = amended with DOC derived from senescent Spartina alterniflora, the dominant vascular plant in adjacent coastal marshes.

class-level taxonomic groupings exhibit differential uptake
of DOC components, including amino acids, glucose, dim-
ethylsulfoniopropionate, glycine betaine and vanillic acid
(Cottrell and Kirchman, 2000; Malmstrom et al., 2005;
Alonso and Pernthaler, 2006; Mou et al., 2008). These
methodologies are typically limited, however, to a small
number of compounds whose importance as a bacterial
substrate must be assumed a priori. Thus further work is
needed to assemble a comprehensive understanding of
the compounds that act as primary conduits for carbon
flow in coastal waters, and how these pipelines for DOC
processing fluctuate on a spatial and temporal basis.

Here we use a complementary methodology based on
functional metagenomics that surveys the DOC pool to
identify potentially bioreactive components as well as
the taxa that may be responsible for their turnover. We
assembled large-scale libraries of mMRNA sequences from
a coastal bacterioplankton community, identified tran-
scripts involved in the transport of DOC, and analysed the
predicted substrates and taxonomic origin of these trans-
porter sequences. Although it cannot furnish quantitative
measures of flux, transporter gene expression analysis
provides insight into potential uptake of organic com-
pounds by bacterioplankton, including substrates that are
in low concentration but high demand (and therefore dif-
ficult to assess by direct chemical measures of DOC) and
those not presupposed to be important conduits for DOC
turnover. Using this functional metagenomics approach,
we generate hypotheses about the bioreactive compo-
nents of south-eastern US coastal DOC and the taxo-
nomic identities and substrate preferences of the bacterial
taxa controlling DOC flux.

Results and discussion
Transcript libraries

Transcript sequences were obtained in May 2007 from
duplicate samples of a bacterioplankton community from

south-eastern US coastal seawater (31°22'57.22"N,
81°16’51.19”"W) with a DOC concentration of 603 puM.
Reverse transcription of mMRNA-enriched community RNA
followed by amplification and pyrosequencing yielded
> 140 000 potential protein-encoding sequences from
each sample (Table 1). Using bioinformatic criteria estab-
lished by in silico analyses of known bacterial genes (see
Experimental procedures for details), ~40% of the poten-
tial protein-encoding sequences had hits to the NCBI
RefSeq database and ~17% could be assigned to a COG
(clusters of orthologous groups) functional category
(Table 1). The remaining sequences likely represent tran-
scripts from unknown genes or poorly conserved regions
of known genes (Poretsky et al., 2009), or small RNAs
(Shi et al., 2009).

DOC-related transporters

Transporter-related sequences accounted for 13% of
COG annotations, approximately half of which were
assigned to categories relevant to DOC consumption
(Table S1). Thus about 1 in 20 COG-annotated mRNAs
were involved in the uptake of organic molecules by bac-
terioplankton cells. Predicted substrates for these DOC-
related transporters were amino acids (25%; including
branched chain and polar amino acids), oligopeptides
(11%), carbohydrates (34%), carboxylic acids (16%),
compatible solutes such as glycine betaine and proline
(5%), polyamines (2%) and lipids (1%) (Fig. 1). Most
DOC-related transporter genes expressed by the bacteri-
oplankton community were for components of ATP-
binding cassette (ABC) transporters, followed by tripartite
ATP-independent periplasmic (TRAP) transporters, and
Na+ symporters (Fig. 1); transcripts for phosphotrans-
ferase system (PTS) transporters were not common. The
independently collected and processed duplicate samples
produced highly similar transcript profiles (Fig. 1).

The taxonomic origin of expressed DOC transporter
sequences was conservatively inferred from a BLASTX
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Fig. 1. DOC-related transporter COGs expressed in a south-eastern US coastal bacterioplankton community. Two independent replicate
samples (Coastal 1 = light green; Coastal 2 = dark green) were collected at night on 6 May 2007, processed for mRNA extraction and
amplification, and sequenced using the 454 FLX system. COGs are shown if either of the replicate coastal samples had at least one
sequence. COG functional descriptions are as follows: Amino Acids, general: COG0834, ABC-type amino acid transport/signal transduction
systems, periplasmic component/domain; COG1115, Na+/alanine symporter; COG1126, ABC-type polar amino acid transport system, ATPase
component; COGO0765, ABC-type amino acid transport system, permease component; COG4597, ABC-type amino acid transport system,
permease component; COG0531, Amino acid transporters; COG4215, ABC-type arginine transport system, permease component; COG4598,
ABC-type histidine transport system, ATPase component; COG4525, ABC-type taurine transport system, ATPase component; COG0814,
Amino acid permeases; COG3633, Na+/serine symporter; COG4160, ABC-type arginine/histidine transport system, permease component;
Amino Acids, branched chain: COG0683, ABC-type branched-chain amino acid transport systems, periplasmic component; COG0559,
Branched-chain amino acid ABC-type transport system, permease components; COG0410, ABC-type branched-chain amino acid transport
systems, ATPase component; COG4177, ABC-type branched-chain amino acid transport system, permease component; COG0411, ABC-type
branched-chain amino acid transport systems, ATPase component; COG1296, Predicted branched-chain amino acid permease (azaleucine
resistance); Amino Acids, di- and oligo-peptides: COG0747, ABC-type dipeptide transport system, periplasmic component; COG0601,
ABC-type dipeptide/oligopeptide/nickel transport systems, permease components; COG1173, ABC-type dipeptide/oligopeptide/nickel transport
systems, permease components; COG4608, ABC-type oligopeptide transport system, ATPase component; COG0444, ABC-type
dipeptide/oligopeptide/nickel transport system, ATPase component; COG4166, ABC-type oligopeptide transport system, periplasmic
component; COG3104, Dipeptide/tripeptide permease; COG1124, ABC-type dipeptide/oligopeptide/nickel transport system, ATPase
component; Polyamines: COG0687, Spermidine/putrescine-binding periplasmic protein; COG3842, ABC-type spermidine/putrescine transport
systems, ATPase components; COG1176, ABC-type spermidine/putrescine transport system, permease component I; COG1177, ABC-type
spermidine/putrescine transport system, permease component II; Lipids: COG1133, ABC-type long-chain fatty acid transport system, fused
permease and ATPase components; COG0580, Glycerol uptake facilitator and related permeases (Major Intrinsic Protein Family); COG2067,
Long-chain fatty acid transport protein; COG2867, Oligoketide cyclase/lipid transport protein; Nucleotides and Coenzymes: COG1972,
Nucleoside permease; COG2233, Xanthine/uracil permeases; COG1953, Cytosine/uracil/thiamine/allantoin permeases; COG4143, ABC-type
thiamine transport system, periplasmic component; COG4145, Na+/panthothenate symporter; COG3840, ABC-type thiamine transport system,
ATPase component; COG3201, Nicotinamide mononucleotide transporter; COG5042, Purine nucleoside permease; Carbohydrates, general:
COG1653, ABC-type sugar transport system, periplasmic component; COG1879, ABC-type sugar transport system, periplasmic component;
COG3839, ABC-type sugar transport systems, ATPase components; COG1175, ABC-type sugar transport systems, permease components;
COG0395, ABC-type sugar transport system, permease component; COG1129, ABC-type sugar transport system, ATPase component;
COG2211, Na+/melibiose symporter and related transporters; COGO0738, Fucose permease; COG1134, ABC-type polysaccharide/polyol
phosphate transport system, ATPase component; COG1682, ABC-type polysaccharide/polyol phosphate export systems, permease
component; COG2271, Sugar phosphate permease; COG5037, Gluconate transport-inducing protein; COG3822, ABC-type sugar transport
system, auxiliary component; COG1762, Phosphotransferase system mannitol/fructose-specific 1A domain (Ntr-type); COG1925,
Phosphotransferase system, HPr-related proteins; COG2213, Phosphotransferase system, mannitol-specific IBC component; COG2893,
Phosphotransferase system, mannose/fructose-specific component 11A; COG3730, Phosphotransferase system sorbitol-specific component
1IC; COG3732, Phosphotransferase system sorbitol-specific component 1IBC; Carbohydrates, pentoses: COG1172,
Ribose/xylose/arabinose/galactoside ABC-type transport systems, permease components; COG4214, ABC-type xylose transport system,
permease component; COG2182, Maltose-binding periplasmic proteins/domains; COG3833, ABC-type maltose transport systems, permease
component; COG 1455, Phosphotransferase system cellobiose-specific component IIC; Carboxylic Acids: COG4663, TRAP-type
mannitol/chloroaromatic compound transport system, periplasmic component; COG1593, TRAP-type C4-dicarboxylate transport system, large
permease component; COG1638, TRAP-type C4-dicarboxylate transport system, periplasmic component; COG4664, TRAP-type
mannitol/chloroaromatic compound transport system, large permease component; COG2358, TRAP-type uncharacterized transport system,
periplasmic component; COG0471, Di- and tricarboxylate transporters; COG4666, TRAP-type uncharacterized transport system, fused
permease components; COG1301, Na+/H+-dicarboxylate symporters; COG4665, TRAP-type mannitol/chloroaromatic compound transport
system, small permease component; COG0651, Formate hydrogenlyase subunit 3/Multisubunit Na+/H+ antiporter, MnhD subunit; COG1620,
L-lactate permease; COG3090, TRAP-type C4-dicarboxylate transport system, small permease component; COG1823, Predicted
Na+/dicarboxylate symporter; COG5037, Gluconate transport-inducing protein; Compatible Solutes: COG2113, ABC-type proline/glycine
betaine transport systems, periplasmic components; COG1292, Choline-glycine betaine transporter; COG4176, ABC-type proline/glycine
betaine transport system, permease component; COG0591, Na+/proline symporter; COG4175, ABC-type proline/glycine betaine transport
system, ATPase component; COG1125, ABC-type proline/glycine betaine transport systems, ATPase components; COG1174, ABC-type
proline/glycine betaine transport systems, permease component.

analysis against the NCBI RefSeq database (Huson et al.,
2007). Forty-seven per cent of all DOC transporter
sequences were assigned to just eight order-level marine
bacterial taxa: Rhodobacterales (30%; o-Proteobacteria,
Primarily ~ Roseobacter),  Rickettsiales (10%; o-
Proteobacteria, primarily SAR11), Flavobacteriales (1%),
and five orders of y-Proteobacteria (6%; sum of Altero-
monadales, Oceanospirallales, Pseudomonadales,
Vibrionales, and an uncharacterized taxon related to
sulfur-oxidizing symbionts). The remaining DOC trans-
porter sequences (53%) were either assigned to one of 12
orders that each accounted for < 1% of sequences or
could not be confidently assigned at the order level. The
inferred taxonomy of expressed DOC transporters is con-

sistent with a companion PCR-amplified 16S rRNA clone
library in which 51% of the sequences were affiliated with
these same eight groups: SAR11 (19%), Roseobacter
(12%), Flavobacteriales (11%) and five y-Proteobacteria
orders (9%) (Fig. S1). About 20% of the 16S rRNA
sequences were classified into taxa without a reference
genome sequence (e.g. SAR86, SAR116 and SAR432).
In our bioinformatic pipeline, transcripts from these
groups would likely be classified only to phylum level
(Poretsky et al., 2009) and thus are without order-level
taxonomic assignments.

Expression profiles indicated that Roseobacter (the
taxon with the most DOC-related transporter sequences)
and y-Proteobacteria expressed transporter genes for all
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major classes of organic compounds and may therefore be
DOC generalists (Fig. 2). This is in agreement with a
previous study in this same coastal ocean showing a
diversity of carbon-processing capabilities in bacterial
assemblages selected for their ability to metabolize only a
single component of the DOC pool (Mou et al., 2008). Yet
while the absence of strict specialization agrees with the
idea that heterogeneity in the supply rate and composition
of DOC to coastal oceans may favour generalist bacteria
(Mou et al., 2008), some order-level taxonomic groupings
appeared to have substrate preferences. The Roseobacter
and y-Proteobacteria groups together accounted for 44%
of all carbohydrate-related transporter sequences (and
83% of those that could be taxonomically assigned) and
may have dominated carbohydrate turnover in this system
at the time of sampling. SAR11 members expressed
numerous transporters for carboxylic acids (34% of
SAR11-like transporter sequences) and amino acids
(37%), but very few for carbohydrates (6%) (Fig. 2).
Flavobacteriales transporters for the uptake of inorganic
compounds (sodium, sulfate, metals) were abundant
(Table S1), but few Flavobacteriales-like sequences for
organic monomer uptake could be recognized in our anno-
tation pipeline. All eight major bacterioplankton taxa
expressed genes for amino acid uptake (Fig. 2).
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Concentration versus flux

The abundance of bacterioplankton transcripts that
mediate uptake of amino acids (36% of DOC-related
transporter sequences) and sugars (34%) (Table 2) con-
trasts with typical measured concentrations of hydrolys-
able amino acids (3%) and carbohydrates (7%) in marine
DOC (Benner, 2002). Carboxylic acids, polyamines and
compatible solutes were likewise considerably better
represented in the bacterioplankton transcriptome (17%,
2% and 5% of DOC-related transporters) than in the
marine DOC reservoir (5%, < 0.1%, < 1%) (Hoéfle, 1984;
Thurman, 1985; Lee and Jorgensen, 1995; Kiene et al.,
2000; Benner, 2002). These discrepancies are expected,
since rapid consumption of freshly produced DOC by
heterotrophic bacterioplankton (Kirchman etal., 1991)
results in a DOC reservoir that is biased towards biologi-
cally recalcitrant constituents (Benner, 2002; Mopper
et al., 2007). Transporter expression analysis is therefore
likely to be a better proxy for the flux of DOC components
into bacterioplankton cells than for the chemical compo-
sition of seawater DOC (assuming mRNAs generally lead
to transporter synthesis and transporter abundance is
roughly proportional to uptake). Indeed, transcript abun-
dance correlates considerably better with the chemical
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Fig. 2. Taxon-specific expression patterns for DOC-related transporter genes. Left column: all DOC-related sequences in unmanipulated
coastal seawater (pooled Coastal 1 and Coastal 2 samples). Middle and right columns: significantly enriched DOC-related sequences in
coastal seawater amended with phytoplankton-derived DOC (middle) and vascular plant-derived DOC (right). Each point of the radar plot
represents the per cent of transporter sequences assigned to a given taxon that was annotated for uptake of the indicated compound class.
The number of DOC-related transcript sequences included in the analysis is indicated in the upper right of each plot.
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Table 2. Bacterioplankton transcripts annotated with functions relevant to DOC uptake.

Coastal 1 Coastal 2 Phyto-DOC VP-DOC
Organic compound % of total % of total % of enriched % of enriched
Amino acids, total 37.6 34.7 12.5 29.6
Amino acids, general 17.6 15.1 12.5 29.6
Amino acids, branched chain 8.3 7.5 0 0
Amino acids, polar 1.8 1.0 0 0
Oligopeptides/dipeptides 10.4 11.1 0 0
Carbohydrates, total 34.1 34.6 24.8 52.5
Carbohydrates, general 32.7 32.1 15.5 45.3
Carbohydrates, disaccharides 0.1 0 0 0
Carbohydrates, pentoses 1.3 2.5 9.3 7.2
Compatible solutes 5.2 5.0 4.4 0
Polyamines 2.0 2.6 4.4 0
Carboxylic acids 17.8 15.2 53.9 17.8
Lipids 1.1 1.2 0 0
Other? 23 6.7 0 0

a. Nucleic acids, vitamins and organic cofactors.

Units are per cent of total DOC-related transporter sequences (Coastal 1 and Coastal 2) or per cent of significantly enriched DOC-related
transporter sequences relative to coastal samples (Phyto-DOC and VP-DOC). Phyto-DOC = amended with DOC derived from four strains of
coastal phytoplankton; VP-DOC = amended with DOC derived from senescent Spartina alterniflora, the dominant vascular plant in adjacent coastal

marshes.

composition of the biologically labile DOC pool
(e.g. > 20% for amino acids, 10-30% for glucose; Kirch-
man, 2003) than with the composition of the total DOC
pool.

Significant mismatches are nonetheless expected
between measures of transporter gene expression and
the relative fluxes of organic molecules from the DOC
pool into heterotrophic bacterioplankton cells. Constitu-
tively expressed transporter genes yield transcripts
regardless of substrate availability (although many bac-
terioplankton transporters were inducible by changes in
the DOC pool; see below). Effects of post-transcriptional
regulatory mechanisms, transporter affinity, transporter
half-life (typically several hours; Cho et al., 1981; Solana
etal.,, 2001) and substrate concentration similarly com-
plicate efforts to infer transport from transcription. For
high-molecular-weight polysaccharides and proteins
(Amon and Benner, 1996), bacterial consumption will be
evident only indirectly, through transporter expression
for constituent monomers or oligomers following extra-
cellular cleavage. Finally, inference of bioreactive DOC
from metatranscriptomic data is constrained by the accu-
racy of bacterial transporter annotation. Sequences
assigned to ‘general’ or ‘hypothesized’ transporter
categories are uninformative (17% of transporter
sequences), and some of the more specific annotations
may be misleading for protein families that have diverse
functions. If the potential protein-encoding sequences
that could not be annotated based on similarity to known
genes (~50%; Table 1) contain DOC-related transporters
in the same proportion as the annotated sequences,
only half the relevant transporter sequences were
detected here.

DOC-induced transcriptional responses

Compositionally different bioreactive DOC should induce
different transcriptional responses by a bacterioplankton
community. If so, transporter gene expression analysis
offers a sensitive bioassay for changes in sources
and composition of biologically labile DOC over highly
resolved temporal scales (i.e. minutes to hours) useful for
addressing dynamics in bacterially mediated carbon flux
through the coastal DOC pool. We tested this using
coastal seawater samples collected in parallel with the
unmanipulated samples described above but amended
for 1 h with model coastal DOC derived from phytoplank-
ton or vascular plants prior to RNA extraction. The
addition of ~250 uM model DOC to a ~600 uM DOC
background increased the relative abundance of tran-
scripts mediating protein synthesis, as evidenced by
upregulation of genes required for synthesis of ribo-
somes, t-RNAs, and associated initiation, elongation and
termination factors (COG J; Fig. 3). This functional cat-
egory, which typically represents the first macromolecular
pool to respond to a shift-up in bacterial activity (Ingraham
et al., 1983; Chin-Leo and Kirchman, 1990), accounted
for 14% and 15% of COG assignments for unmanipulated
coastal seawater, but 23% and 19% following DOC
amendments (Fig. 3). COG assignments for DNA replica-
tion and cell division did not increase (COGs L and D;
Fig. 3). These data suggest that a transcriptional
response to the DOC additions took place by the end of
the 1 h incubation while increases in bacterial cell division
rates, an indication of possible changes in the composi-
tion of the community gene pool that might complicate
data interpretation, had not.
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15 1
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Control 2
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Relative abundance of transporter-related sequences
expressed in experimentally modified DOC compared
with unmanipulated coastal DOC was assessed using an
M-A (magnitude—amplitude) plot (Yang et al., 2002). This
plot was developed for microarray analysis, and is used
here to evaluate the abundance ratio for a COG between
the two samples (log abundance ratio; M) against the
overall abundance of that COG in both samples (mean log
abundance; A). A statistical resampling technique was
used to distinguish the transporter COGs for which there
were significant differences in relative abundance follow-
ing amendment (P < 0.05) (Rodriguez-Brito et al., 2006).
For the two replicate unmanipulated coastal samples
(independently collected, processed and sequenced), the
pair-wise analysis found that only 2% of populated trans-
porter COGs (5 out of 234) were significantly different
(Fig. S2).

In contrast, 15% of the transporter COGs were statisti-
cally different in pair-wise comparisons between the
pooled coastal samples versus the phytoplankton-derived
DOC amendment (39 out of 253 transporter COGs;
Fig. 4A) and 16% in pair-wise comparisons between the
pooled coastal samples versus the vascular plant-derived
DOC amendment (39 out of 250; Fig. 4B). Since coastal
samples and experimentally manipulated treatments
share a common DOC background, significantly enriched
transporters in the experimental treatments signal a
substrate-induced response to labile compounds intro-
duced with the DOC amendments. Transcript annotations
suggested that bacterioplankton exposed to fresh
phytoplankton-derived labile DOC (defined here as the
portion consumed within a 1 h period) expressed consid-
erably more genes for the transport of carboxylic acids
and fewer for the transport of some classes of carbohy-
drates relative to coastal DOC (Table 2, Fig. 4A). Cells
exposed to fresh vascular plant-derived labile DOC
expressed more genes for the transport of carbohydrates

Fig. 3. Transcripts assigned to selected major
functional categories as a per cent of total
COG assignments (COG J only; translation
and ribosomal structure) or as a per cent of
COG assignments after removal of COG J
sequences (COG O, protein turnover and
chaperones; COG L, DNA replication,
recombination, and repair; COG D, cell
division and chromosome partitioning). The
‘transporter’ category sums transporter-related
sequences across major functional categories.

Translation, ribosomal structure (J)

Protein turnover, chaperones (O)
NA replication, recombination, repair (L)

Cell division, chromosome partitioning (D)

(possibly as maltose, fructose, pentoses and mannitol)
and fewer for amino acids, peptides and compatible
solutes (proline, glycine betaine) (Table 2, Fig. 4B). Time-
series analyses in future studies could provide additional
information on the order in which components of the
model DOC pools invoke the cells’ transporter expression
response. These bioreactive compound profiles should be
informative about typical inputs of fresh DOC at this
coastal site, which is largely derived from phytoplankton
(Pomeroy et al.,, 1981), benthic algae (Porubsky et al.,
2008) and Spartina alterniflora-dominated marshes
(Pakulski, 1986; Moran and Hodson, 1990). Further, they
agree with previous research showing that organic acids
(Hellebust, 1965), sugars and amino acids (Meon and
Kirchman, 2001; Cherrier and Bauer, 2004) are rapidly
consumed from plankton-derived DOC, while sugars (par-
ticularly glucose and xylose) (Opsahl and Benner, 1997)
are the major bioreactive component of S. alterniflora
leachate.

To determine which bacterioplankton taxa were most
responsive to changes in the DOC pool, we inferred the
taxonomic origin of sequences assigned to significantly
enriched DOC-related transporter COGs (see above).
Roseobacter-like sequences accounted for most of the
significantly enriched transporter sequences to which
an order-level taxonomy could be assigned (80% in phy-
toplankton exudate and 72% in vascular plant leachate).
SAR11 sequences were relatively more important among
transporter sequences from fresh phytoplankton-derived
organic matter than from vascular plant leachate
(12% versus 2% of enriched DOC-related transporter
sequences), while Flavobacteriales showed the opposite
pattern (0% versus 14%). Since substrate transport is the
first step of many downstream cellular processes, this
taxonomic pattern of activity should be mirrored in other
(i.e. non-transport-related) functional gene categories;
this was found to be the case (Figs S3 and S4). Trans-
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porter expression profiles for individual bacterioplankton
taxa in experimental treatments showed specialization on
DOC compound classes that was similar to that in unma-
nipulated coastal DOC (Fig. 2).

Concluding remarks

Determining which components of the marine DOC pool
serve as conduits for bacterially mediated carbon flux,
and how they vary over time and space, has long been a
central challenge for microbial ecology (Kirchman et al.,
1991; Amon and Benner, 1996; Raymond and Bauer,
2000). The analysis of coastal bacterioplankton transport-

ers provides a new perspective on this important question
by identifying labile compounds being detected or antici-
pated by bacteria. These include many low-concentration/
high-flux compounds that could challenge the detection
limits of chemical analyses in seawater and would be
difficult to measure simultaneously (Fig. 1), as well as
compounds that are not typically evaluated for their role in
DOC turnover (e.g. carboxylic acids, nucleic acid constitu-
ents and polyamines) (Table 2). For example, one out of
six COG-annotated DOC transporter sequences encoded
proteins for carboxylic acid uptake (Table 2), indicating a
major role in carbon flux for a poorly studied compound
class with both planktonic (Hellebust, 1965) and photo-
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chemical (Moran and Zepp, 1997; Bertilsson and Tranvik,
1998) sources. Improved understanding of the specific
substrates targeted by bacterial transporter proteins will
allow more information to be extracted from community
transcript analysis. Further, this approach can work syn-
ergistically with developing methods for high-resolution
chemical characterization of DOC (including mass spec-
trometry and nuclear magnetic resonance spectroscopy;
Mopper et al., 2007; Sleighter and Hatcher, 2009) to
simultaneously identify and assess the bioavailability of
thousands of distinct compounds.

To the extent that transporter mRNAs can be consid-
ered proxies for DOC flux across bacterioplankton cell
membranes, our analysis suggests that two taxa domi-
nated bacterial uptake of DOC in this system at the time
it was sampled. Members of the Roseobacter group pro-
duced 30% of DOC-related transporter sequences and
may have been responsible for the bulk of carbohydrate
transport, while SAR11 members produced about 10%
and showed a preference for carboxylic acids, amino
acids and polyamines (Fig. 5); both appeared active in
amino acid turnover. Since about half the DOC-related
transporter sequences were not assigned to an order-
level taxon, there may be other important groups
involved or there may be additional sequences from
these taxa that did not meet the annotation cut-offs
set here. Future sampling efforts that are temporally
resolved will provide much-needed insights into the
dynamics of bioreactive DOC in this coastal ecosystem,
exploring changes in transporter gene expression pat-
terns over daily, monthly and annual cycles. Despite
constraints imposed by annotation accuracy and
sequencing depth, this analysis of community gene
expression provides a novel perspective on rapidly
cycling components of coastal DOC, detailed information
on the identity and ecological strategies of the bacterial
taxa that drive it, and biological detail at a level crucial
for future predictive carbon cycle models.

Experimental procedures
Sample collection

Coastal water samples were collected in May 2007 at night
and high tide from Sapelo Island, GA. Surface water (10-15 I)
was passed in succession through a 5.0-um-pore-size
polypropylene cartridge filter (USFilter, Warrendale, PA),
a 3.0-um-pore-size Poretics polycarbonate membrane
(Osmonics, Livermore, CA) and a 0.22-um-pore-size Poretics
polycarbonate membrane. Total filtration time was ~30 min.
Two replicate samples were obtained in succession.

RNA extraction and processing

The 0.22-um-pore-size filters were vortexed for 10 min in the
presence of RNase-free beads (PowerSoil Total RNA Isola-

Amino Acids
241/379

Carboxylic Acids

Carbohydrates
310/694

Compatible Solutes

47/110 183/376
Polyamines " Roseobacter
57/113 »SAR11
“ Flavobacteriales

& Qceanospirillales

B Alteromonadales

“Pseudomonadales
Vibrionales

“unclassified gamma

Fig. 5. Taxonomic assignment of transporters by DOC compound
class. Carbohydrate = transcripts assigned to the general
carbohydrate category in Fig. 1; Amino acids = transcripts assigned
to the general amino acid category in Fig. 1. Notations above each
pie diagram = the number of transcripts included in the pie diagram
(i.e. those assigned to one of the eight major taxa)/total transcripts
(including minor groups and those not taxonomically assigned at
the order level).

tion Kit, MoBio, Carlsbad, CA) and lysis/binding solution
(RNAqueous-Midi kit; Ambion, Austin, TX). Samples were
centrifuged (10 000 r.p.m., 10 min), and supernatants mixed
with ethanol solution (RNAqueous-Midi kit). The mixture was
passed repeatedly through an 18-gauge needle, filtered
through a glass-fibre filter unit (RNAqueous-Midi kit), and
washed and eluted according to the manufacturer’s instruc-
tions. On average, 10 ng of RNA was obtained from each
filter. RNA was frozen immediately in liquid nitrogen.

RNA was treated with DNase (TURBO DNA-free Kkit;
Ambion). To minimize rRNA, samples were treated with the
mRNA-ONLY Prokaryotic mRNA Isolation Kit (Epicentre Bio-
technologies, Madison, WI) followed by the MICROBEXxpress
kit (Ambion). Approximately 500 ng of RNA was linearly
amplified (MessageAmp Il-Bacteria Kit; Ambion), and
amplified antisense RNA (aRNA) was converted to double-
stranded cDNA with random hexamers (Universal RiboClone
cDNA Synthesis System; Promega, Madison, WI) and puri-
fied (Wizard DNA Clean-up System; Promega). cDNAs were
sequenced at the Joint Genome Institute using the 454 FLX
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sequencing system. The sequences have been deposited in
the NCBI Short Read Archive with the Genome Project ID
#33823.

Small-submit rRNA clone library construction

DNA was extracted from filters (PowerMax Soil Mega Prep
DNA Isolation Kit; MoBio) and small-submit rRNA libraries
were constructed following the JGI recommended protocol
(http://my.jgi.doe.gov/general/index.html). The sequences
have been deposited at NCBI under the Accession No.
FJ744762-FJ745272.

cDNA sequence annotation

Ribosomal RNA sequences were eliminated following identi-
fication by BLASTN queries against the GenBank nucleotide
database (nt) as described previously (Mou et al., 2008).
Criteria for annotation of unassembled potential protein-
encoding sequences by BLASTX analysis against the NCBI
non-redundant reference sequence database (RefSeq) were
established with in silico tests of randomly fragmented full-
length known genes with high similarity to metagenomic
sequences from Sapelo Island coastal water (Poretsky et al.,
2009). Based on these analyses, the cut-off criteria were set
at E-value = 0.01, similarity = 40%, and overlapping length
= 65 bp to the corresponding best hit. BLASTX analysis was
also carried out against the COG database using similar
cut-off criteria, except the E-value was set at = 0.1. COG
categories annotated with functions involved in the uptake of
organic compounds were identified for further analysis of
DOC-related transporters. Taxonomic binning of sequences
was carried out using MEGAN (Huson et al., 2007). Further
assignment into higher-resolution marine taxa (e.g. Roseo-
bacter and SAR11) was based on the NCBI taxonomy of
closest BLAST hits.

Statistical analysis

A resampling program for metagenomic data sets
(Rodriguez-Brito et al., 2006) was used to compare coastal
and experimental sequences categorized based on COG
assignments, both for all COG categories and for the subset
of COGs representing DOC transport-related functions. The
significance level (P) was set at < 0.05.

Transcriptional responses to phytoplankton- and
vascular plant-derived DOC

Two additional samples, collected in parallel with those
described above, were processed 1 h after amendment with
model DOC preparations from coastal phytoplankton and
vascular plants. Axenic cultures of marine phytoplankton
(Skeletonema costatum, CCMP1332; Chaetoceros calci-
trans, CCMP1315; Alexandrium tamarense, CCMP1771; and
Synechococcus strain WH8101) were grown on a 2- to
3-week schedule at 20°C with a 13:11 light : dark regime of
approximately 100 umol photons m2s™. To obtain con-
centrated organic matter for experimental manipulations,
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stationary-phase cells were filtered onto combusted GF/F
filters, homogenized, and filtered again to remove cell and
filter debris. The chemical composition of intracellular organic
compounds extracted from living phytoplankton has been
shown previously to be similar to material released extracel-
lularly by healthy cells (Hellebust, 1965). Senescent (stand-
ing dead) S. alterniflora culms were collected from Sapelo
Island, GA, rinsed with sterile deionized water and ground
into fragments. Leachate was prepared by incubation in 10 |
of sterile artificial seawater in the dark for 5 days followed by
removal of cell debris. DOC concentration was measured
by high-temperature catalytic oxidation. Additions of
phytoplankton- and vascular plant-derived DOC were made
to 10 | of coastal water (250 uM final concentration). After 1 h
in situ incubation, water samples were filtered as described
above.
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Supporting information

Additional Supporting Information may be found in the online
version of this article:

Fig. S1. Taxonomic assignments of small-subunit rRNA
genes amplified from DNA extracted from unmanipulated
south-eastern US coastal seawater (data from Coastal 1
sample).

Fig. S2. M-A plots of pair-wise comparisons of transcript
relative abundance in transporter-related COGs for duplicate
coastal samples (A) and phytoplankton- versus vascular
plant-derived DOC (B). M = logs(transcripte/transcriptc) and
A ="/, logs(transcripte + transcriptc), where transcripte and
transcriptc are the per cent of transcripts assigned to a COG
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in experimentally manipulated and coastal treatments
respectively. Grey squares indicate COGs that are signifi-
cantly different between samples.

Fig. S3. Heat map of transcript abundance for COGs signifi-
cantly enriched in phytoplankton-derived DOC relative to the
pooled unmanipulated coastal samples. Red arrows indicate
significantly enriched COGs with DOC-related transporter
functions.

Fig. S4. Heat map of transcript abundance for COGs signifi-
cantly enriched in vascular plant-derived DOC relative to the
pooled unmanipulated coastal samples. Red arrows indicate
significantly enriched COGs with DOC-related transporter
functions.

Table S1. Number of bacterioplankton transcript sequences
assigned to transporter-related COGs. The library size for
each sample differs (see Table 1).
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