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Abstract

Biogeochemical cycles in the ocean are mediated by complex and diverse
microbial communities. Over the past decade, marine ecosystem and bio-
geochemistry models have begun to address some of this diversity by re-
solving several groups of (mostly autotrophic) plankton, differentiated by
biogeochemical function. Here, we review recent model approaches that are
rooted in the notion that an even richer diversity is fundamental to the orga-
nization of marine microbial communities. These models begin to resolve,
and address the significance of, diversity within functional groups. Seeded
with diverse populations spanning prescribed regions of trait space, these
simulations self-select community structure according to relative fitness in
the virtual environment. Such models are suited to considering ecological
questions, such as the regulation of patterns of biodiversity, and to simulat-
ing the response to changing environments. A key issue for all such models
is the constraint of viable trait space and trade-offs. Size-structuring and
mechanistic descriptions of energy and resource allocation at the individual
level can rationalize these constraints.
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1. INTRODUCTION

The ecology and biogeochemistry of the world’s oceans are tightly interconnected. Microbial
community structure is shaped by the highly variable physical, chemical, and predatory environ-
ment (Margalef 1968). Microbial community structure, in turn, regulates the environment and
biogeochemical pathways including the export of organic matter to the deep ocean, critical for
the global ocean sequestration of carbon and the modulation of atmospheric carbon dioxide. The
diversity of marine microbial populations is both ecologically and biogeochemically important.
For example, within the phytoplankton there is a sharp functional contrast between blooms of
aggregating and sinking diatoms, armored against predators, and populations of picoplankton
locked in a tightly coupled microbial loop with protist grazers (e.g., Pomeroy 1974, Laws et al.
2000). This contrast regulates the efficiency of nutrient utilization and the quality of exported
organic matter on a regional and seasonal basis. Likewise, the depth at which organic matter is
respired is, in part, regulated by mesopelagic and deep-sea communities of bacteria, archaea, and
larger heterotrophs. The composition of these communities crucially determines the depth at
which organic material is remineralized and thus where and when inorganic nutrients and carbon
are returned to the surface ocean to fuel primary production again (Burd et al. 2002).

The feedback between biogeochemical cycles and microbial communities has stimulated the
explicit representation of the latter in models used for climate and carbon cycle studies. Mathe-
matical and numerical models provide tools with which to untangle the feedbacks and complex
interconnections between marine ecology, biogeochemistry, and physiological diversity. They
provide a platform to organize and quantify conceptual understanding, and by which to synthesize
disparate observations, from environmental metagenomics to satellite observations of the ocean’s
optical properties.

The marine microbial environment is extraordinarily diverse (Figure 1), with many thousands
of algal species identified by microscopy, and much finer scales of richness have been identified
with metagenomic methods (Venter et al. 2004, Delong et al. 2006). Whereas a few species typi-
cally dominate the population numerically in any local set of observations, they are complemented
by a large number of minor players (Pedrés-Ali6 2006). A useful starting point for interpreting
populations of marine microbes is thus the Baas-Becking (1934) paradigm that “everything is
everywhere but environment selects.” Consider the marine environment as a soup of microbial
diversity with an enormously diverse background population of genotypes and associated pheno-
types. Relative fitness in relation to the recent history of the local environment leads to selection
for a particular subset of physiologies (Figure 2). Other physiologies are excluded in that envi-
ronment but may be fitter in other regions or seasons. There is an emergent ecosystem structure
and function that, in turn, modifies the environment. The background of diversity is maintained
by physiological acclimation, genetic adaptation, and dispersal between environmental regimes.
Long-standing questions include: Why are marine microbial populations so diverse (“The para-
dox of the plankton”; Hutchinson 1961)? What are the mechanisms that regulate biodiversity?
Are diverse ecosystems more stable with regard to perturbations (e.g., McCann 2000)? These
fundamental questions have serious implications for the application of numerical ocean ecosystem
and biogeochemistry models to climate change questions. What is the appropriate representation
of diverse ecosystems necessary to reflect and understand the response of the marine ecosystem
to climate change, from both ecological and biogeochemical perspectives? Mathematical models
provide a means to address these ecological questions, and there is a long history of theoretical
work in this area (e.g., Armstrong & McGehee 1980, Huisman et al. 2001, Hubbell 2001). How-
ever, there have been few studies to date using numerical ocean circulation and ecosystem models
to address these issues.
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Figure 1

Light microscope images of representatives of several functional groups of phytoplankton at the same
magnification scale. The phytoplankton population is extremely diverse in terms of function and genetic
makeup. As illustrated, phytoplankton span many orders of magnitude in cell volume or mass. Cell size
places some important restrictions on their ability to acquire resources and their interaction with predators.
Diatoms form silica-based cell structures (here, a beautiful honeycomb pattern in Coscinidiscus radiatus) that
may provide an energy savings relative to a cellulose structure. Prochlorococcus are the smallest
photosynthesizing cells on the planet. Their small size makes them highly suited to nutrient-starved
conditions. Coccolithophorids, e.g., Emiliana buxleyi, form calcium carbonate mineral structures affecting
seawater chemistry. Many dinoflagellates can mix both photosynthesis and predation as energy sources. In
coastal waters, some dinoflagellates, e.g., Amphidinium carterae, produce toxins, possibly as a defense strategy,
which lead to harmful algal blooms and can affect shell fisheries.

Here, we review some current issues in, and examples of, models of diverse marine micro-
bial communities. In part reflecting a historical bias, the discussion and examples shown here
are skewed toward models of photoautotrophic primary producers, developed for biogeochemical
applications. However, many of the issues discussed could, and should, also be pertinent to het-
erotrophic and mixotrophic organisms in the general sense. After a brief overview of ecosystem
modeling and established approaches, our review focuses on recent developments in modeling
diverse microbial populations, the significance for marine ecology and biogeochemistry, and the
representation in ocean models.

2. MODELING MARINE PHYTOPLANKTON POPULATIONS

The parameterizations of microbes in today’s large-scale marine ecosystem and biogeochemistry
models have a direct lineage from the seminal studies of Fleming (1939) and Riley (1946), who
used Lotka-Volterra-type, predator-prey models to interpret the blooms and seasonal cycles in
phytoplankton abundance in the English Channel and at Georges Bank, Massachusetts. Over the
years, and with the advent of efficient computational resources for numerical approaches, models
of marine plankton have advanced to include dynamic predator populations (e.g., Steele 1954),
to encompass heterotrophic microbes (e.g., Fasham et al. 1990), and have been brought together
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Figure 2

The perspective that in the microbial world “everything is everywhere but the environment selects”
(Baas-Becking 1934) provides a useful organizing principle for modeling diverse marine microbial
communities. In this paradigm, the ocean is a “soup” that everywhere contains a wide range of potentially
viable genotypes and associated phenotypes. At any point, selection occurs according to relative fitness given
the recent history of the local environment. Thus, a particular subset of physiologies (genomes) is successful
in particular regions and seasons, whereas others, though excluded there, may be fittest elsewhere. The fit
microbial community, in turn, shapes the local environment. At the same time, the background variety of
organisms with all degrees of fitness is maintained by dispersal between different environments,
physiological acclimation, and genetic adaptation. Baas-Becking’s perspective provides a useful starting point
for interpreting observed communities and a strategy for modeling diverse populations (Bruggeman &
Kooijman 2007, Follows et al. 2007). Here, genetics and physiology are illustrated by a genome of
Prochlorococcus ecotype MED4, environment by surface nitrate concentration, and ecosystem structure by
species richness (see also Figure 7).

with three-dimensional circulation and biogeochemistry models (e.g., Sarmiento et al. 1993). An
excellent historical perspective can be found in the review by Gentleman (2002).

Up to the end of the twentieth century, such models typically resolved only a single, generic
photoautotroph: the classic nutrient-phytoplankton-zooplankton-detritus model. Such models
were combined into ocean circulation models and provided large-scale estimates of carbon fluxes
(e.g., Six & Maier-Reimer 1996). During the era of the Joint Global Ocean Flux Study, how-
ever, the biogeochemical modeling community recognized the importance of functional diversity
within the phytoplankton and zooplankton communities. Facilitated by the continued expansion
of computational resources, three-dimensional ocean biogeochemistry models moved toward the
resolution of multiple, biogeochemically significant functional groups of phytoplankton (e.g., Chai
et al. 2002, Moore et al. 2002a, Gregg et al. 2003, Le Quéré et al. 2005, Hasioka & Yamanaka
2007).
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2.1. Functional Group Models

Such models typically resolve several (between two and six) functional groups or phytoplankton
functional types (PFT's) that represent aggregates of many species with common biogeochemical
functions. These are differentiated by nutrient requirements and differences in the values of
coefficients that govern the basic, underlying physiological parameterizations. These parameters
are provided, where possible, by laboratory studies and may be optimized to bring model state
variables, such as chlorophyll concentration, into line with field observations (e.g., Friedrichs
et al. 2007).

Each functional group provides a distinct control on biogeochemistry and biogeochemical
pathways, comprehensively reviewed by Hood et al. (2006). Resolving diatoms, larger cells with
silica frustules, as a separate group (e.g., Chai et al. 2002) is significant for capturing the export
of organic material and connects to the global silicon cycle (Smetacek 1999, Armstrong et al.
2002). Coccolithophorids, with their dense calcium carbonate platelets, also enhance export of
organic matter to the deep and modulate alkalinity, surface ocean carbonate chemistry, and the
air-sea equilibrium of CO, (Zeebe and Wolf-Gladrow 2001). Models have resolved this functional
type (e.g., Gregg & Casey 2007, Le Quéré et al. 2005), though the relationship between defining
trade-offs and lith production is still rather uncertain. Diazotrophs, or nitrogen fixers, provide a
source of new bioavailable nitrogen to the global ocean, fueling new and export production, and
are often resolved in functional group models (e.g., Moore et al. 2004, Hood et al. 2004, Coles &
Hood 2007), trading off nitrogen fixation against low growth rate and high iron demand. With
appropriate parameterizations, large-scale patterns of these modeled phytoplankton functional
groups broadly match those observed in situ and suggested from remote ocean color observations
(e.g., Gregg & Casey 2007) (Figure 3).

Functional groups help to map out the role of different elements in regulating phytoplankton
populations and productivity on a global scale (e.g., Le Quéré et al. 2005, Moore et al. 2004).
Models using this approach have provided a means to extrapolate from the laboratory and sparse
field observations to global-scale ocean biogeochemistry. For example, the large-scale regulation
of productivity by iron, demonstrated by in situ fertilization experiments (synthesized by Boyd
etal. 2007, de Baar et al. 2005), has been extrapolated to the global scale using ocean models (e.g.,
Moore etal. 2002b, Gregg etal. 2003, Aumont et al. 2003, Dutkiewicz et al. 2005a). These models
have provided “laboratories” to help elucidate mechanisms controlling interannual variability in
ecosystems (e.g., Wang et al. 2006, Dutkiewicz et al. 2001, Henson et al. 2009) and the corre-
sponding impact on the biogeochemical cycles (e.g., Rodgers et al. 2008, Bennington et al. 2009,
Ullman et al. 2009, Wang et al. 2005). Such simulations also provide a means to disentangle trends
(such as anthropogenically forced changes) from natural variability (e.g., Henson et al. 2010) and
explore the impact of changes in both natural and anthropogenic delivery of dust (a source of iron
and nitrogen) to the ocean (e.g., Krishnamurthy et al. 2009, Bopp et al. 2003). The philosophies
of these approaches, resolving a handful of phytoplankton functional types, are nicely summarized
in Hood et al. (2006) and Le Quéré et al. (2005), and such simulations will continue to play a
central role in studies of the ocean biogeochemistry.

However, continuing to increase the biogeochemical and ecological resolution of models
presents new challenges: What degree of diversity should be represented? How does one
represent a highly diverse functional group with a single set of parameters, especially when only a
few candidates have been characterized in culture studies (Hood et al. 2006)? A single, optimized
set of ecosystem structures (even after intense data parameterization and calibration) can fail
to represent the dynamics of ecosystems in environmental conditions for which they were not
tuned. Global change will very likely give rise to shifts in marine ecosystem structure that we

www.annualreviews.org o Modeling Diverse Marine Microbes

31



Annu. Rev. Marine. Sci. 2011.3:427-451. Downloaded from www.annualreviews.org
by DALHOUSIE UNIVERSITY on 06/30/11. For personal use only.

a Diatoms (June) b Chlorophytes (June)

60°N

30°N

60°5 [+

60°N

30°N

0°

60°S

60°E 120°E 180° 120°W 60°W 0° 60°E 120°E 180 120°W 60°W 0°

[ | S| | T I |
100 75 50 30 15 1.0 090 080 070 060 0.50 0.45 0.40 035 0.30 0.25 0.20 0.15 0.10 0.05 0.08 0.01

Chlorophyll (mg m-3)

Figure 3

June distribution of the four phytoplankton functional groups resolved in Gregg & Casey (2007): (#) diatoms, (b) chlorophytes,

(¢) cyanobacteria, and () coccolithophores. Shading is in terms of chlorophyll (mg m~3) for each functional group. Total chlorophyll
concentrations and distribution of functional groups compare well with satellite measurements [Sea-viewing Wide-Field-of-view
Sensor (SeaWiFS) and MODIS Aqua] and in situ data. Figure adapted from Gregg & Casey (2007) with permission of the authors.

cannot anticipate, perhaps elevating the fitness and abundance of currently rare organisms. Even
if we could include every known organism and process in the present-day marine food web in
our model structures, they could fail to predict the potential impacts of global change. Emergent
features are likely to result from even more complex physiological and ecological interactions
such as acclimation and genotypic and phenotypic adaptation. Most such models have many free
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parameters that cannot be constrained with the available data and that therefore provide little or
no predictive ability (Ward et al. 2010). As additional functional groups are added, the number
of these free parameters and error accumulation increases. It is indeed not clear that adding
additional functional groups will always lead to additional understanding or predictive skill (e.g.,
Friedrichs et al. 2007, Thingstad et al. 2010).

2.2. Models Rooted in Diversity

Building a model ecosystem up box by box toward an observed community structure with partially
known physiologies thus presents many challenges. Even within the broad functional groups
generally resolved in biogeochemical models, marine microbes are incredibly diverse. For example,
whereas recent models have represented a single generic diatom, there are in fact thousands of
identified species of diatoms spanning many orders of magnitude in cell volume, with a wide
variety of morphologies and ecological strategies. The application of genomic characterizations
in recent years reveals even finer-scale diversity, for example, the genetically and functionally
diverse ecotypes of Prochlorococcus (Rocap et al. 2003) and heterotrophic bacteria (Morris et al.
2005) in the subtropical oceans. Likewise, a diversity of marine nitrogen fixers has been revealed
and is being mapped in the oceans by molecular methods (Zehr et al. 1998, Church et al. 2008).

Recent studies have explored alternative approaches in which diversity is a fundamental prop-
erty of the model ecosystem (Bruggeman & Kooijman 2007, Merico et al. 2009, Follows et al.
2007). In these studies, a diverse set of algal physiologies is initialized, and their interaction with the
environment determines their relative fitness. This, in turn, organizes ecosystem structure and the
feedback on the resource environment. These models are rooted in the paradigm of Baas-Becking
(1934), depicted schematically in Figure 2.

The biodiversity-inspired approach of Bruggeman & Kooijman (2007) explored the organiza-
tion of microbial communities in a subtropical water column. In their approach, described as a
“system of infinite diversity,” a large number of phytoplankton types, distributed evenly over the
viable range of two physiological characteristics, was maintained at each location in space. Dur-
ing the integration in time, competition for resources led to the concentration of biomass at the
fittest combination of characteristics. With fitness depending on the environment, the modeled
spatiotemporal variability induced continual adaptation of the plankton community. This was fur-
ther ensured by the maintenance of a minimal biomass, even for types with less fit combinations,
via an imposed background immigration rate. Elegantly, trade-offs in physiological abilities were
imposed by assuming that resources must be invested either in the acquisition of a dissolved nu-
trient or in light harvesting, reflecting both acclimation and adaptation. The system captured the
seasonal dynamics and vertical structure of microbial communities in the subtropical oceans and
revealed the seasonal and spatial mapping of fitness conferred by investment in light and nutrient
harvesting (Figure 4).

In the “selection-based” approach of Follows et al. (2007), physiological characteristics includ-
ing sensitivity of growth to light, nutrient, and temperature were assigned stochastically to many
tens of phytoplankton types. A randomly assigned size class provided some organizing trade-offs
among these and other characteristics. This suite of virtual organisms was initialized in an ocean
circulation and biogeochemistry model that resolves nitrogen, phosphorus, iron, and silica cy-
cles. Robustly, across an ensemble of ten integrations, each with its own random assignment of
growth parameters, many phytoplankton types with physiologies resembling real world analogs
were consistently fit and populated the model ocean with plausible distributions and abundances
(Follows et al. 2007). The biogeographical provinces of the model can be described by marking
the ecological boundaries, or ecotones, where transitions in the biomass-dominant phytoplankton
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(@) Modeled concentration of the biomass dedicated to light-harvesting investment, expressed in nutrient
units (analogous to chlorophyll concentration) from the diversity-based marine ecosystem model of
Bruggeman & Kooijman (2007). The model environment is based on the seasonal, subtropical water column
at the Bermuda Atlantic Time-Series station (32°N, 64°W). (b) The distribution of biomass in the trait space
of the model, indicating the fit region of parameter space and the trade-off between light harvesting and
nutrient acquisition. The distribution is normalized so its integral equals one (and is therefore unitless). The
width of the peak indicates the biodiversity of phenotypes in the solution. Adapted from Bruggeman &
Kooijman (2007) with permission of the authors.

type occur (Figure 54). Pleasingly, the emergent pattern of provinces closely reflects classical
biogeographical provinces (Longhurst 1998) and those inferred from satellite remotely sensed
observations of chlorophyll and sea surface temperature (Oliver and Irwin 2008).

Aggregating the biomass of the modeled phytoplankton types into broad functional groups,
based on their stochastically assigned physiological characteristics, reveals a coarse-grained bio-
geography (Figure 5b) similar to that indicated by functional-group-based models (e.g., Moore
etal. 2004, Gregg & Casey 2007, Le Quéré etal. 2005) and estimates based on remote observations
of visible wavelength radiative fluxes (e.g., Alvain et al. 2005, Uitz et al. 2006). Here, however,
each functional group is composed of several phytoplankton types with different light, nutrient,
and temperature sensitivities. For example, several cell types that require silicon can be grouped to
form the functional group of diatoms. Small-cell-types that could not utilize nitrate were classified
as analogs of (a subset of) the cyanobacterium Prochlorococcus. They occupied geographically and
environmentally similar habitats, at similar abundances, to genetically and physiologically distinct
ecotypes of Prochlorococcus observed in nature (Johnson et al. 2006). Pleasingly, the fit analogs
of Prochlorococcus also exhibited combinations of light, nutrient, and temperature adaptation that
corresponded to laboratory cultures of their real-world counterpart ecotypes (Figure 6).

The models of Follows et al. (2007) and Bruggeman & Kooijman (2007) share a similar under-
lying philosophy that diversity and selection through relative fitness are fundamental governing
characteristics of marine microbial communities. Potential advantages of such diversity-based
approaches include the reduction in parameters that must be specified (relative to the number
of organism types resolved) and the self-selection of ecosystem structure and physiologies (i.e.,
parameter values) in a robust and self-consistent manner according to relative fitness and explicit
survival of the fittest. If the underlying descriptions of physiology and environment are appropri-
ate (Figure 2), then not only should the right organisms occupy the right regimes for the right
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Figure 5

Annual mean emergent biogeography from a model in which 78 phytoplankton types were randomly
assigned growth parameters. (#) Biogeographical provinces (defined by dominant species) separated by
ecotones (transitions from dominance by one phytoplankton type to another): Inside each province, several
phytoplankton coexist; only the most dominant is used for the demarcation of the provinces. (#) The large
number of phytoplankton types surviving in this model can be collected into four functional groups:

(i) diatom analogs (red ), (ii) other large phytoplankton (yellow), (iii) other small phytoplankton (b/ze),

(iv) Prochlorococcus analogs ( green). This simulation used the ecosystem formulation of Follows et al. (2007)
and Dutkiewicz et al. (2009) in a high-resolution (~18-km) version of the MIT general circulation model
developed by the Estimating the Circulation and Climate of the Oceans Consortium (ECCO). Simulation
performed by Oliver Jahn and Chris Hill, MIT. Figure credit: Oliver Jahn, MIT
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Figure 6

Optimum temperature (Top:) and light intensity (Iope) for growth of all initialized Prochlorococcus analogs
(circles) from the ensemble of ten model integrations used in Follows et al. (2007). Large circles indicate the
analogs that exceeded a total biomass of 10% mol P along the cruise track of AMT13. In the real ocean,
several Prochlorococcus ecotypes, or strains, have been identified by their genetic diversity that leads to
differences in their light and temperature sensitivity and to distinct geographic habitats (e.g., Johnson et al.
2006). Colored circles indicate classification of model ecotypes by geographic distribution: Red denotes
significant biomass in the upper 25 m along the transect between 15°S and 15°N, corresponding qualitatively
to the habitat of real-world ecotype eMIT9312; blue, analogs that had significant biomass in surface waters
poleward of 15° and low biomass within 15° of the equator, broadly reflecting habitat of real-world ecotype
eMED4; and green, analogs with a subsurface maximum biomass, similar to real-world habitat of ecotypes
eMIT9313 and eNATL2A. Mixed color and solid black circles denote ambiguity in model ecotype
classification. Bold diamonds indicate real-world Prochlorococcus ecotypes (eMIT9312 in red; eMED#4 in blue;
eNATL2A in green; and eMIT9313 in yellow). Pleasingly, both the geographic distribution of the wild
types and the physiological specialization determined by laboratory studies of cultured types match the
model analogs. No Prochlorococcus analog initialized with an optimal temperature for growth below 15°C
survived. Abbreviation: AMT'13, Atlantic Meridional Transect 13. Figure adapted from Follows et al. (2007).

reasons, but the unfit organisms should be excluded for the right reasons too (paraphrasing Rob
Armstrong, personal communication).

However, it is also important to ask to what extent diversity at finer scales (i.e., within broad
functional groups) is important to the understanding and simulation of large-scale marine bio-
geochemical cycles. Salihoglu & Hofmann (2007) found that incorporating several classes of
autotrophic prokaryotes in their model was unnecessary for modeling primary production in a
one-dimensional model of the equatorial Pacific ocean. However, models with more functional
complexity appear to perform better when ported between different regions than do simpler mod-
els (Friedrichs et al. 2007). The degree of diversity to incorporate must be driven by the question
to be addressed. The computational costs of diversity-based approaches can be significantly higher
than the more phytoplankton functional-type models discussed in Section 2.1. Ultimately, mul-
tiple modeling philosophies and platforms will be needed in the quest to understand the links
between ecosystems, biogeochemistry, and the environment.

2.3. Biogeochemical and Ecological Applications
Functional group models have generally resolved a single diazotroph, based on the cyanobacte-

ria Trichodesmium. Recently, however, molecular techniques have revealed a diversity of nitrogen
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fixers (Zehr et al. 1998, Church et al. 2008). By modifying the model of Follows et al. (2007) to al-
low any phytoplankton type to be a diazotroph, with appropriate trade-offs, Monteiro et al. (2010)
found analogs of not only Trichodesmium but also unicellular diazotrophs and diatom-diazotroph
associations to be successful and abundant in the global ocean model. Again, even these broad
categories of diazotroph types were composed of several types. For example, several analogs of
Trichodesmium persisted in the simulations, distinguished by the temperature sensitivity of their
growth and consistent with observations of different genotypes with distinct temperature class
distributions in the real world (Langlois et al. 2008). The model also suggested that unicellular di-
azotroph analogs could contribute as much to nitrogen fixation rates as the Trichodesmium analogs,
in support of previous hypotheses (Carpenter et al. 1999, Zehr et al. 2001).

Diversity-based models also provide an opportunity to explore ecological questions that, to
date, have not been addressed in the context of large-scale ocean models. These include the
question of what maintains and shapes patterns of biodiversity in the oceans. Observations suggest
an equator-to-pole decrease in diversity in marine microbial populations (Pommier et al. 2007,
Fuhrman et al. 2008), consistent with records from higher trophic levels both in the ocean and
on land. Pleasingly, a similar gradient is a feature of the solutions of a global ocean model with a
diverse phytoplankton population (Barton etal. 2010). This gradient s overlain by hot spots of high
diversity in some regions of energetic circulation (Figure 7). The model provides a tool with which
to inquire why those patterns appear. In the illustrated model, the hot spots are largely a result
of large-scale advective transport, bringing together and intermingling populations from distinct
biogeographical provinces. The meridional gradient in the numerical model (in which there is no

0 5 10 15 20
Number of phytoplankton species

Figure 7

Phytoplankton species richness in an ocean model: Here, the measure of diversity is the number of
phytoplankton types with biomass of more than 0.001% of the type with maximum biomass at any location.
Superimposed on a poleward reduction in diversity are hot spots in the regions of the western boundary
currents and other regions of energetic circulation. Further description of these large-scale patterns of
diversity can be found in Barton et al. (2010). This simulation is the same as that shown in Figure 5. Adapted
from figure provided by Oliver Jahn, MIT, with permission.
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explicit speciation) appears to be related to neutral coexistence of similarly fit organisms in the
stable subtropics (as suggested by Falkowski & Oliver 2007), whereas strong seasonality favors
a prime opportunist and beats down diversity in the subpolar oceans (consistent with the simple
model of Stewart & Levin 1973). Marine ecosystem models such as these may prove to be useful
tools to address a broader range of ecological, as well as biogeochemical, questions.

Such models can also be useful for exploring the controls of microbial biogeography. It is of-
ten assumed that temperature constraints prevent Prochlorococcus and Trichodesmium from thriving
outside the tropics and subtropics. Indeed, laboratory studies do reveal growth rates reflecting
adaptation to warm temperatures, and thus temperature is sometimes used to shape the bio-
geography of modeled ocean plankton. However, temperature may not be the absolute control
on the range of habitat of these organisms: When both warm- and cold-adapted Prochlorococcus
analogs were seeded in an ocean model (Follows et al. 2007), the latter never became abundant
(Figure 6). It is the nutrient environment that is the fundamental regulator for Prochlorococcus in
the model (Bragg etal. 2010). If the organisms are fundamentally adapted to oligotrophic environ-
ments, which occur in the subtropics, then temperature dependency of growth should coevolve to
be optimal in those waters, too. A similar organization of diazotroph analogs also occurs (Monteiro
et al. 2010), and those that were cold adapted did not survive. Phytoplankton have presumably
coevolved their nutrient, temperature, and pigment traits for their optimal niche globally and with
depth in the water column (Hickman et al. 2010).

Finally, modeling frameworks that embrace diversity may be particularly suitable for studies
of global change. It is possible that in a system undergoing significant perturbations, physiologies
with previously low fitness and low abundance may come to the fore. In a model with very
low intrinsic diversity, there is little opportunity for this to occur, though biogeography will
certainly be rearranged. A more diverse model population (e.g., Follows et al. 2007, Bruggeman &
Kooijman 2007) carries a “rare biosphere,” a tail of organism types present at low abundance (e.g.,
Figures 45, 8) as is observed in nature. As the environment changes, phytoplankton of previously
low fitness may become more abundant (Figure 9).

3. THE IMPORTANCE OF TRAITS AND TRADE-OFFS

The requirement of trade-offs, the costs and benefits of particular physiological characteristics,
is of prime significance for functional group models, selection-based models, and those with
adaptive dynamics (e.g., Bruggeman 2009). Arbitrary combinations of physiological characteristics
(encoded as parameters such as growth rates and nutrient affinities) will ultimately generate a
“Darwinian demon” or “superbug” that is optimal under all conditions and will exclude all others
in all environments. In nature, this is not possible, because all organisms are constrained by
conservation of resources and morphological considerations at the individual level.

An example of such a trade-off is that between K and r strategists (McArthur and Wilson 1967,
Kilham & Hecky 1988). K-strategists, or gleaners, are adapted to compete effectively for limited
resources, whereas r-strategists, or opportunists, are adapted to take advantage when resources are
abundant. In terms of today’s phytoplankton parameterizations, K-strategists are characterized by
high nutrient affinities (low half-saturation), and r-strategists by high maximum nutrient uptake (or
maximum growth) rates (Grover 1991). Litchman et al. (2007) compiled results from laboratory
studies to show clear empirical evidence for a trade-off between half-saturation and maximum
growth (or uptake) in marine phytoplankton that is tied, in part, to cell size but also to trade-offs
between encounter and handling of resources (Smith et al. 2009). The simplest functional-type
models of phytoplankton reflect these two strategies. Broad classes of gleaners and opportunists,
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Figure 8

Rank abundance of global biomass of the model of Dutkiewicz et al. (2009). Curves for 10 ensemble
members (independent integrations) are shown, each initialized with 78 phytoplankton types, with random
assignment of temperature, light, and nutrient-growth parameters. In all ensemble members, a few cell types
account for most of the biomass, but a long tail indicates that many alternative physiologies persist at low
abundance. Those types with low relative fitness in all environments are at the far end of the tail and
continue to decline in abundance. Only the 50 most abundant types are depicted.

respectively, dominate the biomass of the oligotrophic subtropics and seasonally nutrient-replete,
subpolar oceans in a more complex selection-type model (Dutkiewicz et al. 2009).

Key physiological characteristics, or traits, provide a means by which to organize the all-
important trade-offs (e.g., Margalef 1978, Reynolds 1984). Litchman & Klausmeier (2008) provide
an excellent review of key phytoplankton traits and trade-offs, with implications for modeling. The
trait space defining a phytoplankton may have axes based on morphology, resource-acquisition
abilities, predator susceptibility, motility, and reproduction. However, these characteristics are
not generally independent but have correlated variations often constrained by cell size and shape
as well as energy and nutrient allocation.

Consider a two-dimensional trait space (Figure 10) in which each type of phytoplankton in
a modeled population must be characterized. Although the illustrated traits are nonspecific, they
might, for example, represent maximum nutrient uptake rate (V,,,,) and associated half-saturation
coefficient (K;). A completely random assignment of the two traits may generate an organism any-
where in the two-dimensional trait space. However, energy or resource trade-offs may limit the
actual area that can be plausibly occupied and result in a correlation of traits. Of these physically
reasonable trait combinations, only a subset is likely to be fit in a particular environment, and
thus the observed set of trait combinations does not necessarily fill all possible areas of param-
eter space in a given environment or set of environments (see Bruggeman & Kooijman 2007)
(Figures 4, 10).

To date, global and regional three-dimensional ocean models have typically used crude,
though empirically motivated, parameterizations of trait trade-offs. Mechanistic models and lab-
oratory characterizations are being used to provide fundamental constraints for the trade-offs that
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Figure 9

The change in distribution of 4 (of the 100) phytoplankton types in a model simulation of a future-change
scenario with no emissions policy. The marine ecosystem is based on Follows et al. (2007) and Dutkiewicz
etal. (2009) and is embedded in the MIT Integrated Global Systems Model IGSM2.3; an earth system
model of intermediate complexity; Dutkiewicz et al. 2005b). One hundred phytoplankton were initialized in
the model ocean and a quasi-steady-state distribution was obtained for present-day conditions. The model
was then run forward to year 2100, by which time the ocean surface temperature has risen on average by
approximately 3°C. Numbers were assigned to each phytoplankton type by order of initialization of
parameters, and 4 representative types are shown here. (#) Annual mean biomass (mmol C m~3) for the 4
phytoplankton types for year 2000 conditions. () The same phytoplankton at year 2100. Shifts in
biogeographical distribution occur over the 100-year simulation: Whereas some types have a global
reduction in habitat as their temperature, light, and nutrient niche shrinks, others (e.g., type 76) with a very
low abundance in year 2000 (out on the tail of the rank abundance; see Figure 8) become substantially more
abundant in year 2100 (S. Dutkiewicz, J.R. Scott, M.J. Follows, unpublished manuscript).
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Figure 10

Traits and trade-offs: Schematic of a generic two-dimensional trait space that characterizes each
phytoplankton’s physiology. Energetic trade-offs limit the actual area that can be plausibly occupied,
resulting in a correlation of traits. Such correlations have been observed in laboratory studies for, e.g.,
maximum nutrient-uptake rates and nutrient half-saturation constants and minimum cell quota (e.g.,
Litchman et al. 2007). Of these physically reasonable trait combinations, only a subset is likely to be fitin a
particular environment, and thus the observed set of trait combinations does not necessarily fill all possible
areas of parameter space. In a different environment, a different subset will be fit.

regulate microbial responses (Litchman et al. 2007, Finkel 2001, Armstrong 1999). In the fol-
lowing sections, we discuss constraints for modeling microbial physiology related to cell size and
resource allocation.

3.1. Allometry

It has long been recognized that microbial growth, respiration, nutrient acquisition, light har-
vesting, and sinking speed scale with cell volume or mass (e.g., Laws 1975, Banse 1982, Tang
1995, Litchman et al. 2007, Finkel 2001, Kooijman 2001). Using cell size as a key organizing
trait can significantly reduce the region of possible trait and parameter space in ecosystem models
(Litchman & Klausmeier 2008).

The connection between metabolism, growth rate, and organism size has been noted for cen-
turies (see, e.g., Kooijman 2000). Clear power law relationships hold, spanning many orders of
magnitude of body size, including marine microbes (e.g., Banse 1982, Taylor & Shuter 1981,
Belgrano etal. 2002, Tang 1995) (Figure 11). These relationships have been interpreted in terms
of the optimization of pathways for the internal distribution of substrates (West et al. 1997) and,
alternatively (but perhaps not exclusively), the influence of surface area to volume on nutrient
uptake and demand (Litchman et al. 2007, Munk & Riley 1952, Aksnes & Egge 1991, Armstrong
2008). Predation may also be related to size (e.g., Hansen et al. 1997) due to the general expecta-
tion that predators are likely to tackle prey smaller than themselves (though there are numerous
exceptions). The sinking rate of cells and particles can be linked to size and relative buoyancy
through Stokes’s Law and elaborations thereof (e.g., Smayda 1970). Light harvesting and photo-
synthetic efficiency may also be regulated by the packaging of chlorophyll in cells of different size
(Morel & Bricaud 1981, Finkel 2001). Thus, cell size provides a useful and mechanistic trait for
the organization of some key trade-offs in microbial models.
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Figure 11

Growth rate as a function of cell size: Phototroph data compiled by Tang (1995) from 127 published
laboratory studies of phototrophs. The data reveal a decrease in growth rate with cell carbon content (and
volume) over several orders of magnitude. The data suggest a power law relationship (the indicated blue line
has an exponent of —!/4). Although the data do appear to follow this line, the spread at any particular cell
size is as much as an order of magnitude. In general, Dinophycae ( purple squares; mostly dinoflagellates) have a
lower growth rate than other taxa of the same size. Adapted from figure provided by Chris Kempes, MIT,
with permission.

Ecosystem models in which traits are tied to allometry may be pleasingly elegant. Relationships
between phytoplankton cell size, abundance, respiration, and links to environmental controls can
be captured by such models (e.g., Laws 1975, Irwin et al. 2006). Size-based models are also used
to represent complex trophic networks (Figure 12) with relatively few parameters and can be
applied to studies of biomass spectra and fluxes of energy (e.g., Baird & Suthers 2007, Stock et al.
2008). Combining size with metabolic constraints following the Dynamic Energy Budget (DEB)
theory (Kooijman 2000) provides a basis for models that abide by basic principles such as mass
and energy conservation (e.g., Maury et al. 2007).

3.2. Resource Allocation

Cell size appears to be a key regulating factor for traits and trade-offs, but allometry alone cannot
capture all of the important dynamics of marine microbial populations (Mei et al. 2009, Irwin
et al. 2006, Chisholm 1992). Raven et al. (2005) said “‘biology’ complicates almost all of the ar-
guments made purely on the basis of cell size.” For example, empirically, phytoplankton growth
rate does indeed decrease with cell size according to a power law over several orders of magnitude
(Figure 11). However, the spread at any particular cell size is as much as an order of magnitude.
Within the cells depicted in Figure 11, dinoflagellates have systematically lower maximum growth
rates than diatoms and other phytoplankton with the same cell volume (e.g., Banse 1982, Tang
1995). The offset in size-dependent growth between diatoms and dinoflagellates has been inter-
preted as reflecting a different investment in cellular machinery (Tang 1995). Laboratory studies
reveal a higher cellular abundance of chlorophyll as a percentage of total protein in diatoms
than dinoflagellates (Chan 1978). This is in accord with the observation that diatoms are more
effective (at the same cell size) in pure phototrophic growth, whereas dinoflagellates are investing
elsewhere, perhaps in mixotrophic abilities (Smayda 1997, Litchman et al. 2007, Bruggeman &
Kooijman 2007).
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Figure 12

Schematic of the size-resolved biological model of Baird & Suther (2007). Three trophic levels are shown:
phytoplankton, protozoans, and metazoans, each encompassing several size classes. Curved arrows at the
perimeter of the figure indicate phytoplankton and protozoans dividing. Dashed gray arrows indicate growth
of metazoans into new size classes. Egg spawning is shown by curved dashed-dotted gray arrows. Loss to
unresolved higher predation is indicated by purple arrows. All remaining arrows indicate predation between
size classes and trophic levels. Parameters such as maximum growth rate, sinking, swimming, carbon
content, and egg production, as well as minimum and maximum predator—prey size ratios, are functions of
size. Model equations vary between phytoplankton, protozoans, and metazoans. However, within each
group, one set of equations and allometric relationships is used for all sizes, simplifying the parameterization
of numerous size classes. Figure adapted from Baird & Suther (2007) with permission of the authors.

There are other examples where the general organization of physiological characteristics by cell
size and shape is modulated by the demands of specialization and associated resource and energy
constraints. For instance, populations of diazotrophs (nitrogen-fixers) appear to grow much more
slowly than other cells of comparable size due to the metabolic expense of fixing nitrogen (Geider &
LaRoche 2002), a trade-off commonly parameterized in functional group models. Itis unlikely that
allometry alone will sufficiently constrain trait space for marine ecosystem and biogeochemistry
models, and resource allocation should be brought to bear explicitly.

4. PHYSIOLOGICAL PARAMETERIZATIONS

Consider the underlying framework of physiological parameterization on which large-scale marine
ecosystem and biogeochemistry models are based. Most currently employ the simplest and most
economical description of microbial physiology, Monod kinetics (Monod 1949), in which the
population growth rate is a Michaelis-Menton-like function of the environmental concentration
of the limiting substrate (Figure 134). In this model, nutrient uptake and synthesis of new cells
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DIP
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Schematic representation of the parameterization of photoautotroph physiology employed in marine ecosystem models: (#) Monod-
type, () Droop/Caperon-type with individual quota for each element, carbon (Q.), nitrogen (Qn), and phosphorus (Qp), (c) schematic
concept for a model of algal physiology that resolves key biochemical components of an algal cell, including carbohydrates (CH), lipids
(LIP), amino acids (AA), nucleic acids (NUC), and proteins (PR). Abbreviations: DIC, dissolved inorganic carbon; DIN, dissolved
inorganic nitrogen; DIP, dissolved inorganic phosphorus. Figure inspired by Reynolds (2006), Pahlow & Oschlies (2009), Klausmeier
et al. (2004), Shuter (1979), and others.
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are directly linked, the limiting nutrient is determined following the law of the minimum, and the
elemental ratios of the cells are fixed. Computational economy has been a significant motivation
for the use of this simplest of parameterizations, though the idealizations and limitations of this
approach have been criticized (e.g., Flynn 2003, Droop 2003) and computational constraints are
rapidly becoming less significant.

A more physiologically defensible, yet still highly idealized, alternative is the Droop/Caperon
“internal-stores” approach (Droop 1968, Caperone 1968), in which substrate uptake and synthesis
are decoupled (Figure 135). An internal store of each nutrient element is filled and synthesis/
growth is linked to the internal concentration of the most limiting element, again found using
a law-of-the-minimum approach. Less common in large-scale biogeochemical models (though
see, e.g., Moore et al. 2002a), the internal stores approach is more physiologically defensible
than Monod kinetics and enables variation in the elemental ratios of organic matter in response to
environmental changes (Thingstad & Pengerud 1985, Martinussen & Thingstad 1987). However,
although cell quotas and elemental ratios are flexible, they are somewhat arbitrary as the allocation
of elements within the cell is unresolved.

Several studies point the way toward more biologically meaningful, but still computationally
efficient, descriptions of cellular processes (Figure 13¢). Shuter (1979) developed a model of algal
growth that crudely resolved major biochemical components of the cell and a mechanistic param-
eterization of growth. Geider et al. (1998) allocated cellular resources toward light harvesting,
basic metabolic needs, and storage, providing a dynamic model of photoacclimation. Bruggeman
& Kooijman (2007) and Bruggeman (2009), in a similar vein, allocated cellular resources toward
light harvesting and resource acquisition (both organic and inorganic), whereas Klausmeier et al.
(2004) considered the impact on elemental ratios of the N:P stoichiometry of synthesis and re-
source acquisition machinery. Pahlow & Oschlies (2009) resolve key cellular components in an
idealized yet mechanistic parameterization of algal population growth. Interestingly, in the late
1970s, models of Escherichia coli were developed that had strong analogies with Shuter’s (1979)
algal growth model (Shuler et al. 1979). Those models laid the foundation for the increasing
biological resolution of E. co/i simulations that has continued to this day. This common ground
points the way to a unified underlying platform for representing phototrophic, heterotrophic, and
mixotrophic microbes and the associated trade-offs.
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At the other end of the spectrum from Monod kinetics, whole-genome characterizations of
marine microbes are now available (e.g., Kettler et al. 2007), effectively providing a blueprint for
organisms at the level of fundamental metabolic pathways and biochemical reactions. In the case of
E. coli, for which this type of information is most mature, this has led to extremely detailed models
of individual cells rooted in conservation of elements and energy at the cellular scale, guided by
whole-organism integral constraints (Flux Balance Analysis; e.g., Edwards et al. 2001). There is
currently a vast chasm between the ecologically and biogeochemically oriented parameterizations
embedded in global ocean models and the very detailed, metabolic-pathway perspective enabled
by modern genomic studies.

Itis unlikely that we will see the embedding of whole-cell systems biology models in large-scale
ocean simulations in the near future, not only because of the obvious computational constraints,
but because carrying billions of such detailed individuals would be unlikely to lead to insightful
models. By analogy, physical oceanographers may understand and are able to simulate small-scale
turbulence but choose to parameterize it in larger-scale simulations. However, we do expect that
the emerging wealth of physiological understanding from genomic studies and systems-biological
models of whole cells will lead to new and improved parameterizations of microbial physiology
and resource allocation that are tractable, useful, and rooted in basic conservation laws at or below
the individual level.

We believe that the development, constraint, and application of biochemically informed mod-
els, in the spirit of Shuter (1979) and Pahlow & Oschlies (2009), will bridge the gap between
these perspectives by moving beyond Monod or Droop/Caperon kinetics toward more physiolog-
ically detailed and meaningful (yet still computationally tractable) descriptions of diverse microbial
physiology for applications in marine ecology and biogeochemistry.

SUMMARY POINTS

1. Ocean models provide a platform to synthesize and quantify conceptual understanding.
Ocean models can be used to interpolate and extrapolate sparse observations. In the
last decade, ocean circulation and biogeochemistry models have moved toward resolv-
ing aspects of the diversity of marine microbial populations. Significant emphasis has
been placed on resolving broad functional groups of phytoplankton, each with specific
biogeochemical importance. These functional-type approaches have improved, and will
continue to improve, our understanding of the ecosystem control on ocean biogeochem-
ical cycles.

2. Recentstudies have, however, begun to resolve finer-scale diversity within modeled phy-
toplankton and bacterial populations. Allowing diversity-based models to “self-organize”
according to relative fitness provides a way to circumvent some of the obstacles to box-by-
box extension of the functional group approach. An ecological principle that underpins
the diversity-based models is Baas-Becking’s (1934) “everything is everywhere but the
environment selects.”

3. Such approaches open up new avenues for application of ocean models to marine bio-
geochemical and ecological questions, including the regulation of global patterns of
biodiversity and community structure and how these may alter in a changing environ-
ment. Such questions naturally interface with genomic observations of marine microbial
populations.
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4. The costs and benefits of resource and energy expenditure at the individual level are
primary factors in determining relative fitness under different environmental conditions.
Marine ecosystem models are just beginning to implement trait-based trade-offs linked
to cell size and resource allocation.

FUTURE ISSUES
1. We expect to see molecular and genomic studies, along with individual-scale systems
biology models, inform parameterizations of the trade-offs that constrain organisms.

2. Theoretical ecology and modeling of marine biogeochemical cycles have largely been
separate activities to date. Diversity-based models are facilitating a bridge across this di-
vide. Specifically, the perception of plankton communities as diverse, competition-shaped
collections of types, distributed over trait space, permits the use of “adaptive dynamics”
(e.g., Bruggeman 2009, Merico et al. 2009). This theoretical framework provides means
for reduction of model complexity and for the integration of acclimation, succession, and
evolution in a single modeling framework.

3. Whereas the biogeochemical models resolving marine microbial communities have fo-
cused on photoautotrophs, future models must take a more general perspective in which
heterotrophic, mixotrophic, and phototrophic strategies are treated on a common plat-
form. They are equally important for the application of models to ecological questions
and for studies of global biogeochemical cycles, end-to-end food webs, and marine
resources.
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