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Metatranscriptomics reveals unique microbial small
RNAs in the ocean’s water column
Yanmei Shi1, Gene W. Tyson1 & Edward F. DeLong1,2

Microbial gene expression in the environment has recently been
assessed via pyrosequencing of total RNA extracted directly from
natural microbial assemblages. Several such ‘metatranscriptomic’
studies1,2 have reported thatmany complementaryDNA sequences
shared no significant homology with known peptide sequences,
and somight represent transcripts from uncharacterized proteins.
Here we report that a large fraction of cDNA sequences detected
in microbial metatranscriptomic data sets are comprised of well-
known small RNAs (sRNAs)3, as well as new groups of previously
unrecognized putative sRNAs (psRNAs). These psRNAs mapped
specifically to intergenic regions of microbial genomes recovered
from similar habitats, displayed characteristic conserved second-
ary structures and were frequently flanked by genes that indicated
potential regulatory functions. Depth-dependent variation of
psRNAs generally reflected known depth distributions of broad
taxonomic groups4, but fine-scale differences in the psRNAs
within closely related populations indicated potential roles in
niche adaptation. Genome-specific mapping of a subset of
psRNAs derived from predominant planktonic species such as
Pelagibacter revealed recently discovered as well as potentially
new regulatory elements. Our analyses show that metatranscrip-
tomic data sets can reveal new information about the diversity,
taxonomic distribution and abundance of sRNAs in naturally
occurring microbial communities, and indicate their involvement
in environmentally relevant processes including carbon metabo-
lism and nutrient acquisition.

Microbial sRNAs are untranslated short transcripts that generally
residewithin intergenic regions (IGRs)onmicrobial genomes, typically
ranging from 50 to 500 nucleotides in length3. Most microbial sRNAs
function as regulators, and many are known to regulate environmen-
tally significant processes including amino acid and vitamin biosyn-
thesis5, quorum sensing6 and photosynthesis7. Because the identifi-
cation and characterization of microbial regulatory sRNAs has relied
primarily on a fewmodel microorganisms8–10, relatively little is known
about the broader diversity and ecological relevance of sRNAs in
natural microbial communities.

During a microbial gene expression study comparing four meta-
transcriptomic data sets from a microbial community depth profile
(25m, 75m, 125m and 500m at Hawaii Ocean Time-series (HOT)
Station ALOHA11), we discovered that a large fraction of cDNA
sequences could not be assigned to protein-coding genes or ribo-
somal RNAs (Fig. 1). However, .28% of these unassigned cDNA
reads from each data set mapped with high nucleotide identity
($85%) to IGRs on the genomes of marine planktonic microorgan-
isms (Supplementary Fig. 1), indicating that they may be sRNAs.
Consistent with the genomic location of known sRNAs12, many of
these reads mapped on IGRs distant from predicted open reading
frames (ORFs), or were localized in clearly predicted 59 and 39
untranslated regions (UTRs).

A covariance-model-based algorithm13 was used to search all un-
assigned cDNA reads for both sequence and structural similarity to
known sRNA families archived in the RNA families database Rfam14.
Thirteen known sRNA families were captured in the environmental
transcriptomes, representing only ,16% of the total reads detected
by IGRmapping. The most abundant sRNAs belonged to ubiquitous
or highly conserved sRNA families including transfer-messenger
RNA (tmRNA), RNase P RNA, signal recognition particle RNA
(SRP RNA) and 6S RNA (SsrS RNA; Supplementary Table 1). In
addition, a number of known riboswitches (cis-acting regulatory
elements that regulate gene expression in response to ligand bind-
ing15) were detected in lower abundance, including glycine, thiamine
pyrophosphate, cobalamin and S-adenosyl methionine riboswitches
(Supplementary Table 1). The apparent taxonomic origins of the
most abundant known sRNAs revealed depth-specific variation that
was generally, but not always, consistent with knownmicrobial depth
distributions4 (Supplementary Fig. 2). For example, although SRP
RNAs are abundant in our data sets, very few Pelagibacter-like SRP
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Figure 1 | Inventory of RNAs from each depth in the microbial
metatranscriptomic datasets. The three offset slices represent reads that are
not assigned to rRNA or known protein-coding genes, and are referred to as
‘unassigned’. Numbers in parentheses represent the percentage of the total
unassigned cDNA reads in each category.
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RNA reads were detected, indicating that SRP-dependent protein
recognition and transport may not be a dominant form of protein
translocation in oceanic Pelagibacter populations.

For better characterization of sRNAs in our data sets, including
previously unknown sRNA families (referred to as putative sRNAs
(psRNAs) hereafter), we pooled all cDNA reads from each sample
and used a self-clustering approach to group homologous cDNA
reads (see Methods). On the basis of observations from the IGR
mapping (Supplementary Fig. 1), the self-clustering approach would
help identify potential sRNAs because they are likely to span short
genomic regions and exhibit high abundance (in many cases orders
of magnitude higher than transcripts of protein-coding genes found
in the same data sets). A total of 66 groups that comprised at least 100
overlapping cDNA reads were identified (Fig. 2 and Supplementary
Table 2). For several of these groups, the abundance and depth-
dependent distribution detected by means of cDNA pyrosequencing
was confirmed using reverse transcription–quantitative polymerase
chain reaction (RT–qPCR) analyses (Supplementary Fig. 3). Among
the 66 groups, 9 were identified as belonging to Rfam sRNA families
(Supplementary Table 2), and most of the remaining psRNA groups
mapped to IGRs on metagenomic fragments derived from marine
planktonic microorganisms.

Although they bear no resemblance to known peptide sequences,
the psRNA groups could potentially represent mRNA degradation
products or small unannotated protein-coding regions. We applied
several criteria to help rule out these possibilities, including location
within IGRs, psRNA length, lack of coding potential and conserved

secondary structure. First, the psRNAs ranged in size between 100
and 500 nucleotides (Supplementary Fig. 4 and Supplementary Table
2), and tended to have an increased GC content when located within
an AT-rich genome context16 (Fig. 3a). Second, we systematically
screened multiple sequence alignments of all 66 groups for coding
potential, as indicated by three-base periodicity in the nucleotide
substitution patterns17 (Methods). Only sequences in group 92 were
identified as possibly encoding proteins (Fig. 3b), and these were
subsequently mapped to a specific hypothetical protein (NCBI acces-
sion number: ABZ07689) from a recently described uncultured
marine crenarchaeote18. Third, the psRNA groups encompassed rela-
tively divergent sequences that internally shared conserved secondary
structures (for example, Fig. 3a, inset), indicating evolutionary
coherence of functional roles and mechanisms. The alignment of
full-length psRNA sequences revealed clear nucleotide co-variation
that preserved base pairing in the consensus secondary structure (for
example, Supplementary Fig. 5). In a specific example (group 5),
although three divergent Pelagibacter-like psRNA sequences (one
from 4,000m depth18 and two from surface waters19) shared pairwise
nucleotide identities of only 78% to 87%, predicted secondary struc-
tures were nearly identical (Supplementary Fig. 6). Although com-
putational analyses alone cannot be completely definitive, these
combined criteria support our hypothesis that most of the psRNA
groups that we identified represent authentic microbial sRNAs.

Many of the psRNAs identified here may be derived from as-yet
uncharacterized microorganisms. For example, nine self-clustered
psRNA groups shared no obvious homology with known nucleotide
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Figure 2 | Abundance, distribution and features of the top twenty most
abundant sRNA and psRNA groups identified in the metatranscriptomic
data. The twenty groupswere rankedbased on total abundance. Each group’s
depth distribution is shown in the left panel, with the number of reads in each
data set indicated by colour, from high (red) to low (blue). Each group’s
proximity (59 or 39) to the nearest gene, annotation and putative taxonomy
for that gene (where possible) are shown. The RNA-class probability values
were generated with an SVM learning algorithm using RNAz29. Group 9 is

comprised ofProchlorococcus-like RNase P RNAs. Group 21 sRNAs probably
mediate regulation (via transcription attenuation) of tryptophanyl tRNA
synthetase. Group 30 contains overlapping sRNAs Yfr8 and Yfr9 indentified
in ProchlorococcusMED4 in ref. 8. Lengths of putative sRNAs with no
homology with known nucleotide sequences (each marked with an asterisk)
were predicted through assembly of cDNAs from each group (average contig
size, see Methods). A complete list of sRNA and psRNA groups containing
.100 cDNA reads is provided in Supplementary Table 2.
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sequences (for example, groups 6 and 10), and seem to represent
completely new sRNA families. Most of these were found only in
the 500m sample (Fig. 2). The remaining psRNA groups mapped
to IGRs on genomic and metagenomic sequences derived from
planktonic marine microbes. Although identifying sRNA regulatory
functions and their target genes is a major challenge even for model
microorganisms20, the conserved genomic context of these psRNAs
has potential to provide insight into their functional roles21,22. The
most predominant gene families flanking these psRNA groups
included transporter genes involved in nutrient acquisition (in-
organic nitrogen, amino acids, iron and carbohydrates) and genes
involved in energy production and conversion (Supplementary Table
2). These results highlight the potential importance of sRNA regu-
lation of nutrient acquisition and energy metabolism in free-living
planktonic microbial communities.

Themost populatedpsRNAcluster, group4, appeared to be involved
in the regulation of central carbon metabolism and energy production
in Proteobacteria (predominantly Gammaproteobacteria). The
psRNAs from this group were flanked by genes involved in pyruvate
metabolism (for example, pyruvate kinase and malate synthase),
glucose transport (sodiumglucose symporter) andnitrogen acquisition
(ammonia permease and aminopeptidase; Fig. 2 and Supplementary
Table 2). In several cases, group 4 psRNAs occurred in tandem copies
within the same IGR (Fig. 3a). SmallRNAs that display stable secondary
structure typically mediate regulation using sequences in loop domains
to interact with specific target sequences3,23. Consistent with this mech-
anism, a conserved six-nucleotide sequence motif (AAGAGN)
appeared in multiple loops within predicted hairpin structures for

group 4 (Fig. 3a, inset). The six-nucleotide sequence AAGAGA was
previously verified as a ribosomal binding site24, and indicates that
group 4 psRNAs may have a regulatory role at the translational level.
Indeed, sequences inoneof the loopdomainsof the consensus structure
(Fig. 3a, inset) have potential to interact (by base pairing across 32 bp)
with the flanking pyruvate kinase gene near the 59 translation initiation
site.

In contrast to the broad taxonomic affiliations of group 4 psRNAs,
the other highly abundant psRNA group, group 5, appeared almost
exclusively on Pelagibacter-like genomic fragments recovered from
both open ocean surface waters19 and abyssal (4,000m) depth18, but
did not map to the genomes of currently cultivated Pelagibacter
strains (Fig. 2 and Supplementary Table 2). Group 5 psRNAsmapped
onto 203 different metagenomic fragments, predominantly in the
59UTR of 6-O-methylguanine DNA methyltransferase (6-O-
MGMT, COG0350; involved in DNA repair) and the 39UTR of
tRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase
(trmU, COG0482; involved in tRNAmodification). A predicted pro-
moter and Rho-independent terminator flanked group 5 psRNAs
upstream of 6-O-MGMT, and attenuator/riboswitch characteristics
were identifiable in the 59UTR by secondary structure prediction
(Supplementary Fig. 6). Indeed, the presence of riboswitch-like ele-
ments upstream of 6-O-MGMT genes was previously predicted by
comparing 223 complete bacterial genomes25.

Unlike group 4 and 5 psRNAs, the remaining self-clustered sRNA
and psRNA groups showed depth-variable distributions (Fig. 2).
Group 7 psRNAs were enriched at 500m and were highly conserved
inmarine crenarchaeal genomes. Similarly, cyanobacteria-like psRNAs
were enriched in the photic zone (for example, groups 2, 30, 48 and 17;
Supplementary Table 2). One of these groups (group 30) includes two
experimentally validated sRNAs (Yfr8 and Yfr9), which were found
antisense to one another and were hypothesized to be involved in a
toxin–antitoxin system in Prochlorococcus marinus MED4 (ref. 8).
Intriguingly, a few Prochlorococcus-like psRNA groups mapped to
somebut not all coexistingmembers of theProchlorococcuspopulation,
indicating that such sRNAs may provide niche-specific regulation.
Group 2 psRNAs, for example, were detected only in the genome of
P. marinus strain MIT9215 and in a highly similar genomic fragment
from the environment (NCBI accession number:DQ366713).Group2
psRNAs are located in a hyper-variable region adjacent to phosphate
transporter genes, and share a 14-bpexactmatchwith the59 translation
initiation site of the phosphate ABC transporter gene (pstC). In
Prochlorococcus strains lacking the phosphate regulon two-component
response regulator (phoB) and signalling kinase (phoR)26, such as
MIT9215, it is possible that sRNAs represent an alternativemechanism
for regulating phosphorus assimilation.

To examine sRNA representation in specific abundant microbial
groups, we aligned the psRNA reads to the genome of an abundant
planktonic bacterium, Candidatus Pelagibacter ubique HTCC7211.
Eleven IGRs on the P. ubique HTCC7211 genome coincided with
the psRNAs identified in our samples (Fig. 4), 6 of which were also
independently predicted to be sRNA-containing IGRs (support vec-
tor machine, SVM, RNA-class probability .0.9) by comparative
analysis of three P. ubique genomes (Methods and Supplementary
Table 3). Genes flanking these expressed psRNAs included DNA-
directed DNA polymerase gamma/tau subunit (dnaX), carD-like
transcriptional regulator family and alternative thymidylate synthase
(Supplementary Table 3). Notably, covariance-model-based searches
identified cDNAs mapping to glycine riboswitch motifs in two
Pelagibacter IGRs (Fig. 4 and Supplementary Table 3). Recently, it
was experimentally verified that P. ubique HTCC1062 uses one of
these two glycine riboswitches to sense the intracellular glycine level
and to regulate its carbon usage for biosynthesis and energy27.

The diversity and abundance of sRNAs in microbial metatran-
scriptomic data sets indicates that natural microbial assemblages
use a wide variety of sRNAs for regulating gene expression in res-
ponse to variable environmental conditions. The data and analyses
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described here provide a culture-independent tool to expand our
knowledge of the sequence motifs, structural diversity and genomic
distributions of microbial sRNAs that are expressed under specific
environmental conditions. Although the exact regulatory functions
of many of the psRNAs remain to be experimentally verified, their
in situ expression, structural features and genomic context all provide
a solid foundation for future studies. These data, in conjunction with
metatranscriptomic field experiments linking environmental vari-
ation with changes in RNA pools, have potential to provide new
insights into environmental sensing and response in natural micro-
bial communities.

METHODS SUMMARY
Bacterioplankton samples were collected from the HOT Station ALOHA
(22u 459N, 158uW) in March 2006 at four different depths (25m, 75m, 125m
and 500m), and immediately frozen and stored at 280 uC until processing.
Nucleic acid extraction, RNA amplification, cDNA synthesis and pyrosequen-
cing were performed as previously described1. Ribosomal RNA sequences were
identified by querying against a comprehensive rRNA database using BLASTN,
and were excluded from the subsequent sRNA analysis. Protein-coding genes
were recognized by querying with BLASTX against published peptide databases
as well as a custom marine-specific peptide database (Methods). A covariance-
model-based program (INFERNAL)13 was used to search for known sRNA ele-
ments in the data sets. The self-clustering approach (see Methods) to identify
abundant psRNAs in the environment was based on sRNA reads spanning across
a short genomic region in high abundance. Self-clustered groups that contained
more than 100 cDNA reads were further characterized in detail, including sec-
ondary structure prediction using RNAalifold28, coding potential evaluation,
genomic context examination and sRNA-class probability calculation using
RNAz29 (see Methods). The genome sequences of an oceanic Pelagibacter strain
(HTCC7211) were used to recruit psRNA reads to examine possible regulatory
sRNAs related to oceanic Pelagibacter populations.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 4 | Normalized cDNA/DNA ratios of expressed IGRs (eIGRs) on the
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regions that recruited psRNAs were manually inspected and confirmed as
IGRs. The values in the parentheses are RNA-class probability values
generated with a SVM learning algorithm using RNAz29.
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METHODS
Sample collection and RNA/DNA extraction. Bacterioplankton samples from
the photic zone (25m, 75m, 125m) and the mesopelagic zone (500m) were
collected from the HOT Station ALOHA site in March 2006, as described previ-
ously1. In brief, four replicate 1-l seawater samples were prefiltered through 1.6-
mm GF/A filters (Whatman) and then filtered onto 0.22-mm Durapore filters
(25mm diameter, Millipore) using a four-head peristaltic pump system. Each
Durapore filter was immediately transferred to screw-cap tubes containing 1ml
of RNAlater (Ambion Inc.), and frozen at 280 uC aboard the RV Kilo Moana.
Samples were transported frozen to the laboratory in a dry shipper and stored at
280 uC until RNA extraction. Total sampling time, from arrival on deck to
fixation in RNAlater, was less than 20min.
Total RNA was extracted as previously described1, using the mirVana RNA

isolation kit (Ambion), with several modifications as follows. Samples were
thawed on ice, and then 1-ml RNAlater was loaded onto two Microcon YM-
50 columns (Millipore) to concentrate and desalt each sample. The resulting
50 ml of RNAlater was added back to the sample tubes, and total RNA extraction
was performed following the mirVana manual. Genomic DNA was removed
using a Turbo DNA-free kit (Ambion). Finally, extracted RNA (DNase-treated)
from four replicate filters was combined, purified and concentrated using the
MinElute PCR Purification Kit (Qiagen).
Bacterioplankton sampling for DNA extraction was performed as previously

described1.
Complementary DNA synthesis and sequencing. The synthesis of microbial
community cDNA from small amounts of mixed-population microbial RNA
was performed as previously described1. In brief, nanogram quantities of total
RNAwere polyadenylated using Escherichia coli poly(A) polymerase I (E-PAP)30.
First-strand cDNA was then synthesized using ArrayScript (Ambion) with an
oligo(dT) primer containing a T7 promoter sequence and a restriction enzyme
(BpmI) recognition site sequence, followed by the second-strand cDNA syn-
thesis1. The double-stranded cDNA templates were transcribed in vitro using T7
RNA polymerase at 37 uC for 6 h31, yielding a large amount of antisense RNA.
The SuperScript double-stranded cDNA synthesis kit (Invitrogen) was used to
convert antisense RNA to microgram quantities of cDNA, which was then
digested with BmpI to remove poly(A) tails. Purified cDNA was then directly
sequenced by pyrosequencing32.
Removal of low-quality and rRNA GS20 cDNA sequences. Low-quality cDNA
reads were removed as previously described1.
Reads encoding rRNA were identified and removed from the cDNA data sets

by comparing them to a combined 5S, 16S, 18S, 23S and 28S rRNA database
derived from available microbial genomes and sequences from the ARB SILVA
LSU and SSU databases (http://www.arb-silva.de). BLASTN33 matches with bit
score $50 were considered significant and deemed rRNA sequences. In test
simulations, this bit score cutoff resulted in ,1.7% false positives against a
database of all non-rRNA microbial genes from available microbial genomes.
Identification of protein-coding genes. Protein-coding cDNA reads were
identified by translating nucleotide sequences in all 6 frames and comparing
each to Global Ocean Sampling peptides, the NCBI-nr protein database and a
custom peptide database using BLASTX33. The custom peptide database con-
tained marine-specific ORF sequences predicted from four sources: the Moore
Microbial Genome Project genomes (http://www.moore.org/microgenome/
strain-list.aspx), large genome fragments (,40 kb) from a variety of marine
habitats (Rich et al., in preparation), and both fosmid end sequences and
shotgun library sequences generated from depth profile bacterioplankton sam-
ples collected in multiple HOT cruises (E.F.D. et al., in preparation).
Unpublished databases are available on request.
After rRNA sequences were removed, each cDNA data set contained between

40,000 and 70,000 pyrosequence reads. Of these cDNA reads, a large fraction
(,50%of those fromphotic-zone samples;,70% from themesopelagic sample)
showed no significant homology to either the non-redundant peptide database
from NCBI or marine microbial peptide sequences, using the bit score of 40 that
has been previously validated as a cutoff for calling homology in short pyrose-
quencing reads1.
Assignment of cDNA reads to known non-coding RNA families.We searched
the Rfam database14 to investigate the representation and diversity of known
sRNA families in our data sets. Rfam is a collection of non-coding RNA families,
represented by multiple sequence alignments and covariance models, including
those from 400 complete genomes including 233 bacterial and 24 archaeal
genomes (June 2008 version). The INFERNAL program (http://infernal.
janelia.org/) was used to search for RNA structure and sequence similarities
based on covariance models (also called profile stochastic context-free
grammars)34. The reference database was a collection of covariance models for
all non-coding RNA families downloaded from the Rfam (version 8.1) ftp site
(http://www.sanger.ac.uk/Software/Rfam/ftp.shtml). A perl wrapper named

Rfamscan.pl (http://www.sanger.ac.uk/Software/Rfam/help/software.shtml),
written by Sam Griffiths-Jones, was used to run batch queries (.200,000
cDNA reads) on a local machine.
To test the specificity and sensitivity of the INFERNAL Rfam-seeded search of

our cDNA reads, two data sets were created from the E. coli strain K12 substrain
MG1655, in which sRNAs have been well defined35. The two test data sets were
protein-coding sequences and known sRNA sequences, each with the same
length distributions as our cDNA data set (that is, 206,418 sequence fragments
withmean sequence length 97 bp). The INFERNALRfam-seeded search of the E.
coli MG1655 protein-coding test data set yielded no significant hits, indicating
high specificity and a false-positive rate below detection. However, the
INFERNAL Rfam-seeded search did not identify all E. coliMG1655 sRNA frag-
ments, probably owing to the short lengths of the query sRNA fragments. To
compensate for the decreased search sensitivity due to shorter read length, we
queried all cDNA reads against all full-length sRNA sequences in the Rfam
database by BLASTN. Reads that did not meet the default cutoffs defined by
Rfamscan, but shared goodhomologywithRfammember sequences by BLASTN
(alignment length $90% of sequence length; sequence identity $85%), were
also assigned to the corresponding sRNA families.
Putative taxonomic assignment of cDNA reads in known sRNA families.
Potential taxonomic origins of the known sRNAs were investigated by searching
against NCBI-nt (4 July 2008) using BLASTN (word size of 7, default e-value
cutoff, low complexity filter off, and the ten best hits retained). The BLASTN
results were then parsed using MEGAN36 using default parameters—that is, the
congruent taxonomy of the hits that were within 10% below the best hit was
assigned to the cDNA read.
Self-clustering approach to identify sRNA and psRNA groups.A self-clustering
approach allowed related cDNA reads to form distinct groups that could be
separated from other transcripts based on sequence similarity and overall abun-
dance. Combined cDNA reads (206,418 reads after the removal of rRNAs) from
all 4 depths were locally aligned to each other (that is, all sequences served both as
queries and subjects) using BLASTN with the following settings different from
default:W5 7, F5 F,m5 8, v5 206418, b5 206418, e5 131025. A perl script
was used to group similar cDNA reads based on the BLASTN output. In brief, for
each cDNA query, all matches that met a minimum cutoff of 85% sequence
identity over 90%average sequence length were considered significant and stored
into a hash. The hash then was ranked on the basis of the number of matches
stored for each hash key (query). The cDNA read with the most matches served
as a seed sequence of the first cluster. After all matches of the seed sequence
were recruited, the script looped over each one of the matches and gathered all
subsequent matches until the chain disconnected and a new cluster started to
form.
The self-clustering approach was successful in identifying a number of highly

abundant psRNA groups. These psRNAs were clearly distinct from protein-
coding clusters as they were found in much higher copy number than most
mRNAs, and the typical length of psRNAs was ,100–500 nucleotides. The
sequence identity cutoff (85%) was chosen because it allowed known RNase P
RNAs from closely related microbial populations (for example, all
Prochlorococcus RNase P RNAs) to form a distinct sequence group. However,
because sRNA species by nature differ in their primary sequence divergence,
clustering based on one sequence identity cutoff inevitably yields psRNA groups
with different within-group diversity, which either represent homologues from
closely related microbial populations or highly conserved elements from diverse
microbial taxa.
Systematic screening for coding potentials of the self-clustered groups. We
identified a total of 66 groups that contained more than 100 cDNA reads (a file
named ‘H179_sRNA_groups.tgz’, containing all sequences from these 66
groups, and a file named ‘H179_sRNA_groups_CLUSTAL.tgz’, containingmul-
tiple sequence alignments of subsets of sequences from these 66 groups, can be
downloaded from http://web.mit.edu/ymshi/Public/). To assess the possibility
that some groups represent unannotated small proteins, we systematically
screened multiple sequence alignments of these 66 groups for coding potentials
based on three-base periodicity in nucleotide substitution patterns. The ration-
ale of detecting three-base periodicity in coding regions is that codons encoding
the same amino acid often differ only in a single nucleotide located in the third
position of the codon. As a direct consequence, in coding sequences under
selective evolutionary pressure, substitutions are more often tolerated if they
occur at the third position of codons. Therefore, if aligned sequences are pro-
tein-coding, the spectral signal of the mismatches along the alignment is
expected to be maximal at frequency 1/3 (three-base periodicity)17.
We generated a pipeline for multiple sequence alignment, nucleotide diversity

calculation (conversion of DNA sequence alignments to numerical sequences)
and Fourier transform and power spectrum analysis of the numerical sequences
for all 66 groups (including known sRNAs and psRNAs). Specifically, 100
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sequences were randomly sampled from a subset of overlapping sequences in
each group, and aligned using MUSCLE 3.6 (ref. 37). The random sampling and
alignment was repeatedmultiple times proportional to the number of sequences
in the group. For each alignment, average nucleotide diversity was calculated for
each column of the alignment as following:

Daverage~
P

Dpair-wise

.
N (N{1)=2

where Daverage represents average nucleotide diversity, Dpair-wise represents
pair-wise nucleotide diversity (a pair of identical nucleotides was given a value
of 0, and a pair of different nucleotides was given a value of 1) and N(N2 1)/2
represents the total number of pairs in the column of the alignment. Owing
to high insertion/deletion error rate of pyrosequencing32, any alignment
column where greater than 75% of sequences had a gap resulted in that column
being ignored in the subsequent calculation. After the multiple sequence
alignments were converted to numerical sequences, a Fourier transform and
power spectrum analysis38 of the numerical sequences were performed using
MATLAB (http://www.mathworks.com/) to find significant frequencies of
periodicity.
RT–qPCR analysis of psRNA group 7 and sRNA group 9. The apparent abun-
dance and depth-dependant distribution of group 7 and group 9 in our meta-
transcriptomic data sets were validated using RT–qPCR. Owing to lack of
absolute quantification standards for these groups, we calculated their relative
abundance to the crenarchaeal ammonia monooxygenase subunit A (amoA)
transcript in the 500m sample. Primers for these groups were designed using
the Invitrogen web-based OligoPefect primer designer. The primer sequences
are: G7_Primer1 (59-AGCTCTGCTGGTTCYAGACT-39) and G7_Primer2
(59-TCGAACATTCACGCTTCCT-39); G9_Primer1 (59-TAAGCCGGGTTCTG
TTCATC-39) and G9_Primer2 (59-GCCGCTTGAGACTGTGAAGT-39). The
primer set for the crenarchaeal amoA transcript was the same as previously
published39: CrenAmoAQ-F (59-GCARGTMGGWAARTTCTAYAA-39) and
CrenAmoAModR (59-AAGCGGCCATCCATCTGTA-39). All primers were
blasted against NCBI-nt database to avoid potential matches to unwanted
regions.
Possible traces of DNA were removed from all RNA samples using the Turbo

DNA-free kit (Ambion) following the manufacturer’s instructions. For each
reverse transcription reaction, 1 ml of RNA (4–7.5 ng) was reverse transcribed
using gene-specific primer and Superscript III reverse transcriptase (Invitrogen).
Reverse transcription was performed at 50 uC for 50min, after an initial incuba-
tion step of 5min at 65 uC. The reverse transcription reactionswere terminated at
85 uC for 5min, and 1ml RNaseH was added to each reverse transcription reac-
tion, followed by incubation at 37 uC for 20min. Subsequently, SYBR Green
qPCR reactions were performed on LC480 (Roche Applied Science) using the
specific primer set for each gene of interest. We used the 22DDCT method40 to
compare the relative abundance of group 7 and group 9 transcripts in all 4
samples (25m, 75m, 125m and 500m) to the crenarcheal amoA transcript in
the 500m sample.
Characterizing psRNA groups. The psRNA groups were further characterized
to determine the approximate psRNA length, proximity to (59 or 39 or unknown
(when the psRNA is not flanked by one ORF on each side)) and annotation of
nearest flanking ORF on available genome/metagenome fragments, putative
taxonomy and SVM-based RNA class probability. Pooled cDNA reads (not
including rRNA reads) from each transcriptomic data set were queried against
a custom database of nucleotide sequences from available genome and metage-
nomic projects (see above) using BLASTN. Metagenomic fragments in this
database were run through Metagene41 to identify predicted ORFs (coding)
and intergenic (non-coding) regions.
Using the BLASTN and Metagene results, cDNA reads were mapped to each

genome/metagenome fragment based on sequence similarity ($85% identity
over 90% of the read length), which could be used to calculate coverage values
for each coding and intergenic region on each genomic/metagenomic fragment.
Two groups were identified as highly expressed protein-coding genes (group 35,
ammonia monooxygenase subunit C; and group 42, ammonia permease) and
were excluded from further analyses. In most cases, reads belonging to putative
sRNA groups mapped with high coverage to IGRs on genomic/metagenomic
fragments. In these cases, we estimated the size of psRNAs in each group by
defining the psRNAs as the sequence region in intergenic space havingminimum
sequence coverage of greater than ten times. In addition, it was also possible to
determine the location of these psRNAs with respect to coding sequences.
psRNAs were labelled as either 39 or 59 based on their position relative to the
nearest flanking gene. Functional annotation for each of the genes flanking
psRNA groups was obtained by comparing the amino acid sequences against
the KEGG42, COG43 and the NCBI-nr databases from NCBI using BLASTP.

Putative taxonomic origins of each fragment were assigned based on the NCBI
taxonomy of matches in the NCBI-nr database.
Only 9 psRNAgroups had nohomology to sequences in the currently available

database. To estimate the size of each of these psRNA groups, reads from each
were assembled using PHRAP (2minmatch 15, 2minscore 20, revise_greedy)
and the average length of contigs (,10 contigs) formed used to infer sequence
space spanned by the sRNA group.
To calculate the RNA class probability for each group, the first twenty cDNA

reads recruited to each psRNA groupwere extracted from the data set and placed
in the same sequence orientation.Multiple sequence alignments were performed
using MUSCLE 3.6 (ref. 37). The sequence alignment for each psRNA groups
(CLUSTALW format) was then used to predict consensus structure and the
thermodynamic stability using RNAz29, and an RNA-class probability was cal-
culated based on the SVM regression analysis.
Secondary structure prediction. The minimum free energy structure was
predicted based on the multiple sequence alignment of full-length psRNA
sequences extracted from metagenomic sequence reads. The RNAalifold pro-
gram from the Vienna RNA package28,44 was used to produce consensus second-
ary structure and sequence alignment colour-coded based on nucleotide
variations. The colour hue indicates how many of the six possible types of base-
pairs (GC, CG, AU, UA, GU, UG) occur in at least one of the sequences. Pairs
without sequence covariation are shown in red. Ochre, green, turquoise, blue
and violet mark pairs that occur in two, three, four, five and six types of pairs,
respectively. Pale coloursmark pairs that cannot be formed by all sequences (that
is, inconsistent base changes occur in some sequences). Attenuator-like structure
was predicted using RibEx program25.
Mapping cDNA reads to the genome of P. ubique HTCC7211. Candidatus
Pelagibacter ubique HTCC7211 genome sequences were downloaded from the
Moore Microbial Genome Project (http://www.moore.org/microgenome/
strain-list.aspx). Based on the genome annotations, all IGR sequences greater
than 50 bp (excluding rRNA and tRNA) were extracted and used to create
BLASTN database. Both DNA and cDNA reads from each sample were then
queried (BLASTN) against the database and parsed using same criteria as
above (alignment length $90% of sequence length; identity $85%). For each
IGR an expression ratio was calculated as the percentage of cDNA reads assigned
to the IGR, relative to that in the DNA library. If there were cDNA hits but no
DNA hits, the number of DNA hits was considered to be 1. This normalization
compensates for the IGR length differences, and differences in DNA and cDNA
library sizes.
Prediction of sRNA-containing IGRs in Pelagibacter genomes. Three
Pelagibacter genomes (Pelagibacter ubique HTCC1062, HTCC1002 and
HTCC7211) were used in the comparative genome analysis to predict possible
sRNAs in the IGRs based on conserved secondary structure among closely
related genomes45. A total of 1,113 IGRswere extracted from these three genomes
(again only IGRs$50 bp and excluding tRNAs and rRNAs), and locally aligned
to pooled ORFs and IGRs (5,398) from the three genomes using BLASTN with
the following settings changed from default: W5 7, F5 F, v5 5398, b5 5398.
ORFs were included so that cis-acting regulatory elements of mRNA were also
examined. A total of 1,848 IGR sequences were extracted from all the high-
scoring segment pairs with bit scores greater than 50, using Bioperl46. Self-
clustering of this subset of Pelagibacter IGR sequences was then performed, as
described above. Sequences in each cluster were aligned using MUSCLE 3.6
(ref. 37) and the alignments were scored for their secondary structure conser-
vation and thermodynamic stability using RNAz 1.0 (ref. 29). SVM-based RNA-
class probability values from the RNAz pipeline were gathered for each cluster
and ranked from high to low.
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