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ABSTRACT

IMG/M is a data management and analysis system
for microbial community genomes (metagenomes)
hosted at the Department of Energy’s (DOE)
Joint Genome Institute (JGI). IMG/M consists of
metagenome data integrated with isolate microbial
genomes from the Integrated Microbial Genomes
(IMG) system. IMG/M provides IMG’s comparative
data analysis tools extended to handle metagenome
data, together with metagenome-specific analysis
tools. IMG/M is available at http://img.jgi.doe.gov/m

INTRODUCTION

Studies of the collective genomes (also known as
metagenomes) of environmental microbial communities
(also known as microbiomes) are expected to lead to
advances in environmental cleanup, agriculture, industrial
processes, alternative energy production and human
health (1). Metagenomes of specific microbiome samples
are sequenced by organizations worldwide such as the
Department of Energy’s (DOE) Joint Genome Institute
(JGI), the Venter Institute, Washington University in
St. Louis, and Genoscope using different sequencing
strategies, technology platforms and annotation proce-
dures. According to the Genomes OnLine Database,
about 25 metagenome studies have been published to date,
with over 60 other projects ongoing and more in the
process of being launched (2). JGI is one of the major
contributors of metagenome sequence data, currently
sequencing more than 50% of the reported metagenome
projects worldwide.
Due to the higher complexity, inherent incompleteness

and lower quality of metagenome sequence data,

traditional assembly, gene prediction and annotation
methods do not perform as well on these datasets as
they do on isolate microbial genome sequences (3,4).
In spite of these limitations, metagenome data are
amenable to a variety of analyses, as illustrated by several
recent studies (5–10). Metagenome data analysis is usually
set up in the context of reference isolate genomes and
considers the questions of phylogenetic composition and
functional or metabolic potential of individual micro-
biomes, as well as differences between microbiome
samples. Such analysis relies on efficient management of
genome and metagenome data collected from multiple
sources, while taking into account the iterative nature of
sequence data generation and processing.

IMG/M aims at providing support for comparative
metagenome analysis in the integrated context of micro-
bial genome and metagenome data generated with diverse
sequencing technology platforms and data processing
methods. IMG/M was initially developed as an experi-
mental system (11). Subsequently, IMG/M has been
extended in terms of metagenome data content and
metagenome specific analytical tools, as discussed below.

DATA CONTENT

IMG/M consists of microbial metagenome data integrated
with isolate microbial genomes from the Integrated
Microbial Genomes (IMG) system (12). The current
version of IMG/M (as of September 2007) contains
metagenome datasets generated using shotgun sequencing
for 10 projects involving a total of 24 microbiome samples,
including an acid mine drainage biofilm (5), three isolated
deep sea ‘whale fall’ carcass samples, an agricultural soil
sample (6), two biological phosphorus removing sludge
samples (7), the metagenome of gutless marine worm
symbionts (8), two human distal gut samples (9) and obese

*To whom correspondence should be addressed. Tel: �925 296 5718; Fax: �925 296 5666; Email: nckyrpides@lbl.gov

� 2007 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/

by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



and lean mouse gut samples (10). Several other metage-
nome datasets such as hypersaline microbial mats and
termite hindgut metagenomes, are currently analyzed
using an internal version of IMG/M in preparation for
publication.

The current version of IMG/M also includes 2301
genomes from IMG 2.0 (released on 1 December 2006),
consisting of 595 bacterial, 32 archaeal, 13 eukaryotic and
1661 phage genomes.

Similar to IMG, the data model underlying IMG/M
allows recording the primary sequence information and its
organization in scaffolds and/or contigs, together with
computationally predicted protein-coding sequences and
some RNA-coding genes. Protein-coding genes are
characterized in terms of additional annotations such as
motifs, domains, pathways and orthology relationships,
which may serve as an indication of their functions. These
annotations are based on diverse data sources such as
COG (13), Pfam (14) and KEGG (15). Genes are assigned
to COGs and Pfams based on reverse position specific
BLAST (RPS-BLAST) and NCBI’s Conserved Domain
Database (16). Homologs are computed as unidirectional
hits with an E-value of 10�2 or better, with IMG/M
providing support for filtering homolog lists by percent
identity, bit score and more stringent E-values.

Isolate organisms are identified via their taxonomic
lineage (domain, phylum, class, order, family, genus,
species and strain), while individual microbiome samples
are treated as ‘meta’ organisms. The sequences of a
microbiome sample together with their associated genes
and annotations are grouped into ‘bins’ when binning has
been performed to assign these sequences to organism
types (phylotypes). Both isolate organisms and micro-
biome samples are characterized by a variety of metadata
attributes. Some metadata such as phenotype, habitat,
disease, relevance, temperature and pH, are included from
GOLD (2), with additional metadata collected directly
from scientists or publications.

DATA ANALYSIS

We briefly review below the IMG/M data analysis tools
with emphasis on the support for new metagenome
analysis tools developed since IMG/M’s initial public
release in 2006 (11).

Data exploration and visualization tools

Data exploration tools in IMG/M help selecting and
examining genomes/metagenomes, genes and functions of
interest. Similar to IMG, genes and functions can be
selected using keyword searches or functional classifica-
tion (e.g. COG, Pfam) browsers. Lists of genes and
functional annotations of interest can be maintained and
further explored using various ‘Analysis Carts’.

Metagenomes and isolate genomes can be selected using
a keyword based ‘Genome Search’ tool or a ‘Genome
Browser’. Microbiomes can be further examined using the
‘Microbiome Details’, where a user can find relevant
metadata such as sample site, as shown in pane 1 of
Figure 1, along with various summaries of interest such as

the total number of scaffolds and genes or the number
of genes associated with functional characterizations
(e.g. COG, Pfam). The ‘Phylogenetic Distribution of
Genes’, shown in pane 2 of Figure 1, provides an estimate
of the phylogenetic composition of a microbiome sample
based on the distribution of the best BLAST hits of the
protein-coding genes in the sample. The ‘Phylogenetic
Distribution of Genes’ consists of a histogram, with
counts of protein-coding genes in the sample that have
best BLASTp hits to proteins of isolate genomes in each
phylum or class with more than 90% identity (right
column), 60–90% identity (middle column) and 30–60%
identity (left column). The higher the number of hits and
percent identity cutoff, the more likely it is that the sample
contains close relatives of the sequenced isolate genomes
from this phylum/class. Gene counts in the histogram are
linked to the corresponding lists of genes, which can then
be selected and added to ‘Gene Cart’ or analyzed through
their ‘Gene Pages’. For each phylum/class, the phyloge-
netic distribution of genes can be projected onto
the families in that phylum/class; for each family the
distribution of genes can be further projected onto the
species in that family. Finally, the genes in the sample can
be viewed in the context of an individual reference isolate
genome, using either the ‘Reference Genome Context
Viewer’ as shown in pane 3 of Figure 1, or the ‘Protein
Recruitment Plot’, as shown in pane 4 of Figure 1. The
‘Reference Genome Context Viewer’ displays the meta-
genome genes aligned with their homologous genes of the
reference isolate genome. The metagenome genes are color
coded to indicate BLAST percent identity (blue for 30%,
green for 60% and red for 90%), while the genes of the
reference genome are color coded to indicate their COG
functional role, and are displayed as they are located
along the chromosome. The ‘Protein Recruitment Plot’
displays the BLASTp hits of the metagenome genes
against the genes of the reference genome, with the
coordinates of the scaffold reference genome and the
BLAST percent identities shown on the X and Y axis,
respectively.
Similar to genes of isolate genomes, metagenome genes

can be examined using ‘Gene Details’ pages, which include
information on locus, biochemical properties of the
product, KEGG pathways, as well as evidence for the
functional prediction: gene neighborhood, COG and Pfam
and precomputed lists of homologs, orthologs and
paralogs (for isolate organisms), or intra-metagenome
homologs as well as homologs to other genomes and
metagenomes (for microbiomes).
For metagenomes that include contigs and scaffolds

generated by assembly of individual reads and potentially
comprised of sequences from multiple strains, a ‘SNP
BLAST’ tool allows to examine the heterogeneity between
the reads contributing to the composite population contigs
and scaffolds. This tool allows users to run BLASTn of the
query nucleotide sequence of a specific gene or scaffold in
the metagenome against a database of sequencing reads.
The BLAST output, which shows whether there are any
SNPs among the reads corresponding to the query
sequence, can be examined using the raw BLAST output
or using the ‘SNP VISTA’ viewer (17).
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Comparative analysis tools

Comparative analysis of genomes and metagenomes is
provided in IMG/M through a number of tools that allow
to examine their gene content and functional capabilities.
The differences in gene content of genomes and metage-
nomes can be examined with a profile-based selection tool
(‘Phylogenetic Profiler’) and further explored through
gene neighborhood analysis and multiple sequence align-
ment tools, which are similar to their IMG counterparts
(12). Functional capabilities of a microbial community
can be examined using several occurrence and abundance
profile-based tools. We discuss below in more detail the
abundance profile tools that are specific to metagenome
data comparative analysis.
Several ‘Abundance Profile’ tools can be used for

comparing the functional capabilities of metagenomes
and genomes. The ‘Abundance Profile Viewer’ provides an
overview of the relative abundance of protein families
(COGs and Pfams) and functional families (enzymes)
across selected metagenomes and isolate genomes,

as illustrated by the example in pane 1 of Figure 2
which shows the abundance profiles of COGs across three
whale-fall microbiomes. Abundance of protein/functional
families is displayed as a heat map over all families of a
specific type (COGs, Pfams, or enzymes), as shown in
pane 2 of Figure 2, with red corresponding to the
most abundant families. Each column on the map
corresponds to a genome or metagenome, while each
row corresponds to a family. Clicking on the cell will
retrieve the list of genes assigned to this particular family
in this genome or metagenome, while clicking on the
identifier of the family displayed on right side of the
column (e.g. COG0642) will add the corresponding
family to the ‘Function Cart’, as shown in pane 3 of
Figure 2. For protein families in the ‘Function Cart’ a
selective ‘Function Profile’ can be computed, as shown
in pane 4 of Figure 2.

The ‘Abundance Profile Viewer’ and ‘Function Profile’
tools provide a rough estimate of the functional capabil-
ities of metagenomes. When metagenomes are compared

Figure 1. Metagenome Data Exploration and Visualization Tools. Individual microbiome samples such as the ‘Sludge/Australian’ sample, can be
examined using the ‘Microbiome Details’ page, which includes relevant microbiome information (1). The ‘Phylogenetic Distribution of Genes’ tool
(2) displays the distribution of best BLAST hits of protein-coding genes in the microbiome as a histogram, with counts of genes that have best
BLASTp hits to proteins of isolate genomes in each phylum or class with more than 90% identity, 60–90% identity and 30–60% identity.
The distribution of genes for each phylum/class can be projected onto the families in that phylum/class such as Betaproteobacteria, and then further
projected onto the species in that family such as Rhodocyclaceae. The genes in the sample can be viewed in the context of an individual reference
isolate genome such as Dechloromonas aromatica, using the ‘Reference Genome Context Viewer’ (3), or using a ‘Protein Recruitment Plot’ (4).
For each gene on ‘Reference Genome Context Viewer’ and ‘Protein Recruitment Plot’, locus tag and scaffold coordinates are provided locally
(by placing the cursor over the gene), while additional information is available in the ‘Gene Details’ page, which is linked to each gene.
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to each other or to isolate genomes, statistical tests are
needed for estimating the statistical significance of the
observed differences. The ‘Abundance Comparison’ tool,
illustrated in pane 5 of Figure 2, takes into account the
stochastic nature of metagenome datasets and tests
whether the differences in abundance can be ascribed to
chance variation or not. The results provided by this tool
include an assessment of statistical significance in terms of
a d-score (that translates into a P-value) in addition to the
gene count based abundance, as shown in pane 6 of
Figure 2. The d-score is a standard normal statistics
derived under a binomial assumption where the corre-
sponding P-value provides support at different levels of
significance (e.g. 0.05, 0.01).

FUTURE PLANS

The current version of IMG/M contains data on 2301
isolate genomes, 21 metagenome samples from 9 studies
and 3 simulated datasets from a metagenome data
processing benchmarking project (4). New metagenome
datasets are continuously included into IMG/M from

metagenome studies conducted at JGI and other institutes
such as the Washington University in St. Louis, while new
reference genomes are included from IMG.
New visualization tools are currently developed in order

to improve the efficiency of analyzing large and complex
metagenome datasets, including datasets generated with
new technology platforms such as the Genome Sequencer
20TM System from 454 Life Sciences. The abundance
profile tools will be extended to allow comparison of
genomes and metagenomes based on higher-level func-
tional categories such as COG functional categories and
KEGG pathways. As the number of analytical tools
increases, the organization and documentation of the
IMG user interface will be revised in order to improve its
usability.
We also plan to extend IMG/M’s capability to capture

more detailed metadata attributes characterizing micro-
biome samples. Such attributes are often specific to a
habitat (e.g. biomedical, ecological). Samples are asso-
ciated with properties used for metagenome analysis such
as sample structural and morphological characteristics

Figure 2. Abundance Profile Tools. The ‘Abundance Profile Viewer’ (1) provides an overview of the relative abundance of protein families (COGs
and Pfams) and functional families (enzymes) across selected metagenomes, normalized for genome size or using z-score. Abundance of protein/
functional families is displayed as a heat map (2), with each cell hyperlinked to the list of genes assigned to a particular family. A protein family can
be saved in the ‘Function Cart’ by clicking its identifier such as COG0642 (3). For protein families in the ‘Function Cart’ a selective ‘Function
Profile’ can be also computed (4). The ‘Abundance Comparison’ tool (5) takes into account the stochastic nature of metagenome datasets and tests
whether the differences in abundance can be ascribed to chance variation or not. In addition to the gene count based abundance, the results provided
by this tool include an assessment of statistical significance in terms of D-score (6) or P-value.
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(e.g. sample site, time of collection) and donor or host
data (e.g. demographic and clinical record, including
diagnosis, disease, stage of disease and treatment informa-
tion for human donors). Samples may also be involved in
clinical studies and therefore can be grouped into several
time/treatment study groups. In addition to extending the
data model for supporting sample metadata, we plan to
improve the coherence and completeness of these annota-
tions via manual curation. We collaborate with the
Genome Standards Consortium (18) in order to ensure
high coverage and consistency of microbiome sample
metadata.
The current version of IMG/M does not provide sup-

port for data curation. We plan to incorporate into
IMG/M the annotation capabilities that are available in
IMG for isolate genomes, adapted to handle metagenome
data.
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