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Although the evolution process and ecological benefits of symbi-
otic species with small genomes are well understood, these issues
remain poorly elucidated for free-living species with large ge-
nomes. We have compared 115 completed prokaryotic genomes by
using the Clusters of Orthologous Groups database to determine
whether there are changes with genome size in the proportion of
the genome attributable to particular cellular processes, because
this may reflect both cellular and ecological strategies associated
with genome expansion. We found that large genomes are dis-
proportionately enriched in regulation and secondary metabolism
genes and depleted in protein translation, DNA replication, cell
division, and nucleotide metabolism genes compared to medium-
and small-sized genomes. Furthermore, large genomes do not
accumulate noncoding DNA or hypothetical ORFs, because the
portion of the genome devoted to these functions remained
constant with genome size. Traits other than genome size or
strain-specific processes are reflected by the dispersion around the
mean for cell functions that showed no correlation with genome
size. For example, Archaea had significantly more genes in energy
production, coenzyme metabolism, and the poorly characterized
category, and fewer in cell membrane biogenesis and carbohydrate
metabolism than Bacteria. The trends we noted with genome size
by using Clusters of Orthologous Groups were confirmed by our
independent analysis with The Institute for Genomic Research’s
Comprehensive Microbial Resource and Kyoto Encyclopedia of
Genes and Genomes’ Orthology annotation databases. These
trends suggest that larger genome-sized species may dominate in
environments where resources are scarce but diverse and where
there is little penalty for slow growth, such as soil.

The genome sequences of the smallest genome-sized prokary-
otic species, the obligate endocellular parasites, have pro-

vided insight into the interrelationship between the ecology and
genome evolution of these species (1–3). For instance, when
compared their free-living relatives, these reduced genomes have
preferentially lost genes underlying the biosynthesis of com-
pounds that can be easily taken up from the host, such as amino
acids, nucleotides, and vitamins. Furthermore, regulatory ele-
ments, including ! factors, have commonly been eliminated from
such symbiotic bacteria, presumably due to the rather stable
environment inside host cells, which renders extensive gene
regulation useless (4–6). It is not yet clear whether there may
also be trends in gene allocation for the larger genome-sized
free-living bacteria. If such trends do exist, they could reveal
strategies of genome expansion, provide insight into the upper
limit of genome size, reveal whether there is more centrally
coordinated regulation, and most important, suggest what eco-
logical benefits accrue for such species.

There is currently an increasing amount of evidence that
favors the existence of universal trends between functional gene
content and genome size. For instance, Jordan et al.’s (7) analysis
of 21 genomes showed that lineage-specific gene expansion is
positively correlated with genome size and may account for up
to 33% of the coding capacities in the genome. Furthermore,
comparative genomic studies of Pseudomonas aeruginosa PAO1
and Streptomyces coelicolor A3, two larger genome species, noted

a disproportionate increase relative to smaller genome-sized
species in regulatory and transport genes and in genes involved
in secondary metabolism, respectively (8, 9). However, only a
limited number of species were analyzed in both of these studies,
and the analysis was restricted to specific functional processes.
Furthermore, in the former study, no other species in the panel
of strains evaluated had a genome size comparable to strain
PA01, a moderately large (6.3-Mb) genome-sized strain; thus,
the significance of these findings for other large prokaryotic
genomes is unknown.

We sought to more comprehensively evaluate how the relative
usage of the genome changes with genome size, using all
sequenced genomes and evaluating all functional classes of
genes.

Materials and Methods
We undertook the functional characterization of 115 completed
genomes deposited in the GenBank database as of May 2003 (the
list of genomes is presented as Table 3, which is published as
supporting information on the PNAS web site) using the Clusters
of Orthologous Groups (COG) database (10, 11). At the time of
this study, the COG database was comprised of 144,320 protein
sequences from 66 completed genomes forming 4,873 groups of
orthologous proteins (COG). Individual COG are clustered in 20
individual functional categories, which are further grouped in
four major classes (see Table 1).

All possible ORFs from the 115 genomes were assigned to a
functional category according to the category where their best
COG homolog is classified. Homologs were identified by using
the BLAST local alignment algorithm (12) and a cut-off of at least
30% identity at the amino acid level over 70% of the length of
the query protein in pair-wise sequence comparisons. This
cut-off is above the twilight zone of similarity searches where
inference of homology is error-prone due to low similarity
between aligned sequences; thus query proteins were presum-
ably homologous to their COG match (13, 14). Homologous
proteins can be either orthologs (homology through speciation)
or paralogs (homology through lineage specific gene duplica-
tion), and both paralogs and orthologs are assumed to retain the
same biochemical function, whereas paralogs have usually di-
verged in specificity (15, 16). Therefore, ORFs are expected to
share at least the same general function with their COG matches.
PERL scripts were used to edit ORF assignments where neces-
sary; formatting databases for BLAST searches and automatically
parsing BLAST outputs.

We further tested our findings from the COG database by
using the publicly available data from the ortholog group table
database at the Kyoto Encyclopedia of Genes and Genomes
(KEGG) and the Comprehensive Microbial Resource database
(CMR) supported by The Institute for Genomic Research
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(TIGR). The KEGG database classifies orthologous genes from
all sequenced species into 24 functional categories (17). An
identical strategy as previously mentioned for COG was used to
assign each ORF from 75 fully sequenced genomes (the same
genomes used for TIGR data below) to a KEGG functional
category. TIGR performs an automated whole-genome anno-
tation on any published microbial genome, which classifies genes
in 19 redundant Role Categories (or functional categories), i.e.,
a single protein can be assigned in more than one category (18).
The number of proteins devoted to a Role Category for each of
the 75 genomes incorporated in CMR as of July 2002 was
obtained from the Multi Genome Query Tool at the CMR web
site (www.spacetransportation.org"Detailed"44108.html).

The amount of noncoding DNA in any genome was calculated
by subtracting the sum of the lengths of the coding sequences
annotated in the GenBank files from the estimated size of the
genome.

Results and Discussion
With the previously described strategy, we were able to assign,
on average, 70.3% of the ORFs in any genome to a COG
functional category. If one considers that a significant amount of
predicted genes (!15–20%) is species-specific in every genome
sequenced so far (19), we have characterized the large majority
of the repertoire of each cell.

Data Normalization. Our main objective was to study the relation-
ship between the total ORFs in the genome and the genomic
fraction devoted to a functional category. To normalize the
effect of the different degrees of representation in the database,
genomes with too many or too few genes homologous to the
database were not included in inferring patterns with genome
size, i.e., genomes in which the percentage of genes homologous

to the database fell within one standard deviation from the mean
(x! 70.3%, SD 11.2) are represented by solid squares (87 of the 115
genomes), whereas the rest are represented by open squares (Fig.
1). Functional categories showed similar trends with total ORFs
in the genome both when the normalized set and all genomes
were considered (Table 1). However, trends with the normalized
set should be more accurate because this set minimizes the bias
in database representation. The use of genome size instead of
total ORFs in the genome gave identical results due to the high
correlation (R2 " 0.98) between these two parameters of the
genome (Fig. 2A). Therefore, total ORFs in the genome and
genome size are used interchangeably in the following text.

Major Trends with Genome Size. To identify major universal trends,
as opposed to ones that are attributable to the preferential gene
loss in the reduced genomes, the analysis was repeated including
only normalized genomes that had at least 2,000 ORFs anno-
tated in their genomic sequences. COG functional categories
that showed correlation with genome size for both sets tested
(i.e., all solid squares and solid squares with 2,000 ORFs) were
considered cases of major trends, and these categories are shown
in Fig. 1. Categories that showed correlation with genome size
(at a P value threshold of 0.01) for only one of the two sets of
genomes tested were considered cases of minor trends and are
not shown for simplicity (but presented as Fig. 6, which is
published as supporting information on the PNAS web site). All
findings are summarized in Table 1.

The COG functional categories that showed universal corre-
lation with genome size were: informational categories of trans-
lation, ribosomal structure and biogenesis, and DNA replication
recombination and repair. These categories showed a strong
negative correlation with genome size, whereas transcription
(transcription apparatus and transcription control genes)

Table 1. COG functional categories and category correlation with total number of ORFs

Functional class Individual functional categories Correlation* Normalized species† #2,000 ORFs All species‡

Information J: Translation, ribosomal structure and biogenesis $ 0.99, %0.001 0.95, %0.001 0.98, 0.001
K: Transcription & 0.44, %0.001 0.18, 0.001 0.37, %0.001
L: DNA replication, recombination, and repair $ 0.21, %0.001 0.19, 0.002 0.24, 0.004

Cellular processes D: Cell division and chromosome partitioning $ 0.41, %0.001 0.55, %0.001 0.37, %0.001
V: Defense mechanisms No – 0.096 0.20 0.001 – 0.38
O: Posttranslational modification, protein turnover No 0.13, 0.002 – 0.66 0.29 %0.001
M: Cell envelope biogenesis, outer membrane No – 0.19 – 0.26 – 0.40
P: Inorganic ion transport and metabolism No 0.18, %0.001 – 0.60 0.1 0.001
U: Intracellular trafficking, secretion No 0.15, 0.001 – 0.36 0.27 %0.001
N: Cell motility & 0.1, 0.004 0.16, 0.001 – 0.64
T: Signal transduction mechanisms & 0.55, %0.001 0.20, %0.001 0.46, %0.001

Metabolism F: Nucleotide transport and metabolism $ 0.44, %0.001 0.57, %0.001 0.53, %0.001
G: Carbohydrate transport and metabolism No – 0.015 – 0.44 – 0.023
E: Amino acid transport and metabolism No 0.29, %0.001 – 0.09 0.07 0.005
H: Coenzyme metabolism No – 0.23 – 0.05 0.11 0.0006
I: Lipid metabolism No – 0.04 0.15, 0.002 – 0.14
C: Energy production and conversion & 0.1, 0.004 0.15 0.002 – 0.29
Q: Secondary metabolites transport and metabolism & 0.30, %0.001 0.12, 0.005 0.31, 0.001

Poorly characterized R: General function prediction only No – 0.012 – 0.48 0.06, 0.008
S: Function unknown No 0.4, %0.001 – %0.86 0.24 %0.001

The 20 functional categories (second column) are grouped in four major classes (first column) (adapted from the COG web site).
*The genomic fraction attributable to a functional category showed universal positive (&), negative ($), or no (No) correlation with total ORFs in the genome
when both correlations for normalized genomes (fourth column), and normalized genomes with #2,000 ORFs (fifth column) were significant at a P value
threshold of 0.01 (P value denotes the confidence level that the correlation observed is significantly different from the null hypothesis, e.g., no correlation).

†Power correlation R2 and P values for each set are shown. The power correlation gave among the highest R2 values from the types of correlations tested for
most functional categories. It should be mentioned, however, that there were typically very small differences among different models (e.g., linear, power,
logarithmic, etc.) in their ability to describe the trends with total ORFs in the genome (data not shown). Thus, no assumptions can be made about the mechanisms
underlying the relationship between functional gene content and total ORFs in the genome.

‡The sixth column shows correlations for all 99 bacterial genomes used in this study. The 16 archaeal genomes were not included in the analysis, because Archaea
had significantly different genomic fractions from Bacteria in many functional categories.
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showed a strong positive correlation (Fig. 1 Left). Of the cellular
processing categories, the percent of genes related to cell division
and chromosome partitioning category showed a small decrease
with genome size (!1–2%), whereas the percent of genes related
to signal transduction mechanisms and cell motility strongly and
moderately increased with genome size, respectively (Fig. 1
Center). Among the individual metabolism categories, nucleo-
tide transport and metabolism showed a strong negative corre-
lation with genome size, whereas energy production and con-
version and secondary metabolite biosynthesis, transport, and
catabolism showed a moderate and strong positive correlation
with genome size, respectively (Fig. 1 Right). Notably, genomes
with %2,000 ORFs have almost no secondary metabolism-
related genes (Fig. 1 Right).

Minor Trends with Genome Size. Categories of posttranslational
modification and protein turnover, inorganic ion transport and
metabolism, intracellular trafficking and secretion, amino acid
transport and metabolism, and function unknown categories
showed correlation only when all solid squares were considered,
i.e., no correlation for solid squares with #2,000 ORFs (Table 1).
Therefore, these trends are attributable to the preferential gene
loss in the reduced genomes. Furthermore, several categories
that were universally correlated with total ORFs in the genome
showed stronger correlation with all solid squares compared to
solid squares with #2,000 ORFs. Thus, such categories like
transcription, signal transduction, and secondary metabolite
biosynthesis are also affected by preferential gene loss in the
reduced genomes. These results are in good agreement with the
current knowledge of which functional categories are more likely
to have been reduced in the symbiotic genomes.

On the other hand, categories of defense mechanisms and lipid

metabolism showed correlation only when solid squares with
#2,000 ORFs were considered. These trends, however, are more
likely a database artifact due to the underrepresentation of large
genomes than a real preferential accumulation of such genes by
the large genomes. The fact that there were several small
genomes with high percentages of ORFs devoted to these
categories (which accounted for the lack of correlation when all
solid squares were considered) supports the former interpreta-
tion. Last, it should be mentioned that most minor trends
involved weak correlations and small changes (!1–2%) in the
fraction of the genome devoted to the corresponding functional
categories.

Noncoding DNA and Hypothetical ORFs. Interestingly, the genomic
fraction assigned to hypothetical ORFs (i.e., poorly character-
ized categories) remained constant for genomes with #2,000
ORFs. Moreover, the fraction of noncoding DNA was also
invariable (at !12–14% of the genome) for all 115 genomes
evaluated (Fig. 2B), which confirmed previous results that
analyzed a smaller set of species (20). Therefore, the large
prokaryotic genomes overall are not explained by dispropor-
tionate accumulation of junk DNA, i.e., hypothetical genes or
noncoding sequence.

In contrast, genomes with %2,000 ORFs have a smaller
percent of function unknown (or conserved hypothetical) ORFs
compared to larger genome-sized species. This suggests that
some of these genes, if they indeed code for proteins, have
dispensable functions in the larger genome-sized bacteria. If
these genes follow the trends of the other functional categories,
then these unknown genes may be involved in regulation or
secondary metabolism rather than in informational processes.
Nonetheless, a significant fraction (!3%) of the genes in the

Fig. 1. COG functional categories that showed universal correlation with total ORFs in the genome. y axes are the percent of ORFs in the genome attributable
to a specific COG category (graph title), and x axes are the total ORFs in the genome for each of the 99 fully sequenced bacterial genomes. Solid squares represent
genomes that had a reasonable number of genes with homologs in the COG database, whereas open squares represent genomes that had either too many or
too few genes with homologs in the database (outliers). Trendlines and R2 shown are for the solid squares. Archaeal genomes were not included because Archaea
had significantly different genomic fractions from Bacteria in many functional categories.
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reduced genomes remains attributable to the function unknown
category. Their retention suggests that at least some of the
conserved hypothetical genes encode for functional proteins.

Factors Other than Genome Size. The correlation R2 values indicate
that genome size can only partially explain some of the shifts in
gene content. Strain-specific traits are assumed to be responsible
for datapoint dispersion around the mean, which is pronounced
for several functional categories. For example, by examining
individual COG, we conclude that the number of the prevalent
ABC transporter genes (and transport genes in general) was
proportionately increased (i.e., the genomic fraction devoted to
them remained constant) with genome size, and there was little
dispersion around the mean suggesting a universal relationship
with genome size (Fig. 3). However, specific bacterial groups like
the ecologically versatile "-Proteobacteria Agrobacterium and
Mesorhizobium sp. had a disproportionately increased number of
ABC transporters, whereas the more habitat-specific bacteria
like the #-Proteobacteria Xanthomonas sp. had fewer than the
average ABC transporters.

As far as traits other than total ORFs in the genome are
concerned, we evaluated whether the ribosomal rRNA (rrn)
copy number could explain some of the shifts in functional gene
content. The rrn copy number had, typically, a small effect on
functional gene content compared to the total ORFs in the
genome. However, in the case of carbohydrate transport and
metabolism, the correlation was stronger for rrn copy number
(R2 " 0.4, P % 0.001) than for total ORFs in the genome
(correlation not significant at P " 0.01). The rrn copy number
is positively associated with the rate at which phylogenetically
diverse bacteria respond to resource availability (21), thus the
strong correlation between carbohydrate metabolism and trans-
port and rrn copy number is not surprising.

Last, the higher variability observed for data points repre-
senting small genomes is partially attributable to the fact that a

small genome will show a dramatic change in functional patterns
with a small change in the number of genes for a cellular process.
Thus, while analyzing the percent of genes in a functional
category can reveal major changes, it is less sensitive for detect-
ing changes among large genome-sized prokaryotes.

Results from KEGG and TIGR Annotation Databases. Results using
COG, KEGG, and TIGR databases are not always directly
comparable because of database-specific characteristics. Al-
though the KEGG Orthology database performs high-quality
annotation, it has incorporated a limited (only the well-
described) number of pathways and processes (17). Thus, more
orthologous groups can be found in COG than in the KEGG
database. With respect to TIGR annotation, although assign-
ment of correct function is usually satisfactory (!90%), !50%
of the genes in a genome remain unassigned or are assigned to
poorly characterized categories (vs. !40% for COG) (18).
Moreover, as noted on the CMR web site, all Role Category data
were generated at the time each genome was entered into the
CMR; thus newer genomes may have more genes assigned to
Role Categories than older ones. Despite these limitations, there
are several categories that are comparable among the three
databases and hence can be used to test the validity of the trends
revealed with COG. Our results for these categories were
congruent (a selected set of KEGG and TIGR’s functional
categories is presented as Fig. 7, which is published as supporting
information on the PNAS web site). For example, KEGG and
TIGR informational categories of protein translation and DNA
replication were negatively correlated with genome size (R2 #
0.4 for all categories), whereas regulation category was positively
correlated with genome size (R2 # 0.52), similar to the COG
data.

Bacteria vs. Archaea. Our analysis also revealed that there were
some notable but small differences between Bacteria and Ar-
chaea in the relative usage of the genome for the different cell
functions (Fig. 4). Archaea appeared to have a higher genomic
portion devoted to energy production and conversion, coenzyme
metabolism, and poorly characterized categories than their
bacterial counterparts of the same genome size. On the other
hand, Archaea had relatively fewer genes involved in carbohy-
drate transport and metabolism, cell envelope and membrane
biogenesis, and inorganic ion transport and metabolism. Some of
the differences, like those concerning energy production, cell

Fig. 2. Correlation among total number of ORFs in the genome, noncoding
DNA, and genome size for prokaryotic genomes. (A) The total number of ORFs
in the genome vs. the genome size for 115 completed prokaryotic genomes.
(B) The total amount of noncoding DNA in the genome vs. genome size.

Fig. 3. ABC transporter genes proportionately increase with genome size. y
axis is the number of genes attributable to ABC transporter functions, and x
axis is the total ORFs in the genome for each of the 99 fully sequenced bacterial
genomes. Genomes that have disproportionately increased or decreased their
number of ABC transporter genes are denoted on the graph.
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envelope, and general prediction-only categories were more
strongly supported by the data (compare errors bars in Fig. 4).

A set of archaeal specific proteins in addition to the standard
proteins encountered in a typical prokaryotic cell would explain
the higher genomic fraction in the above categories for Archaea.
In agreement with this hypothesis, Graham et al. (22), in an
attempt to define an archaeal genomic signature, concluded that
genes with no detectable bacterial or eukaryotic homologs
mostly involve energetic systems and cofactor biosynthesis, e.g.,
genes involved in methanogenesis. On the other hand, the fewer
genes for cell-wall biogenesis are probably attributable to the fact
that Archaea possess a different cell wall from Bacteria. Archaea
lack peptidoglycan in their cell wall, and peptidoglycan biosyn-
thesis requires a battery of enzymes in bacteria (23). Further-
more, the archaeal cell wall components and metabolism have
not been studied to the same extent as those for Bacteria and
hence are missing from the database.

Joint Genome Institute (JGI)’s Species Sequenced to High Draft. We
also analyzed the 39 partially sequenced genomes in the JGI
database in the same way. This is a collection of exclusively
environmental strains, which includes seven strains with genome
sizes #6 Mb (average genome size, 3.83 vs. 3.23 Mb in the closed
set). Although trends between gene functional categories and
total ORFs in the genome for JGI genomes were very similar to
those for the fully sequenced genomes (data not shown), only
59.8% (vs. 70.3% for the closed set) of the ORFs in the JGI set
were assignable to a COG category. This may indicate that this
genome set samples more of the uncharacterized genes in nature,
although some of the difference is likely due to the lack of
manual curation of the annotation.

What Is Gained in a Large Genome? Our analysis showed that larger
genomes preferentially accumulate regulation, secondary me-
tabolism, and, to a smaller degree, energy conversion-related
genes as opposed to informational ones, judging from the inverse
pattern for these classes with genome size (Fig. 5). We per-
formed the same analysis in May of 2002, using the 75 genomes
available at that time and a database of 3,852 COG groups (vs.
4,873 COG currently). The results between this set and the
expanded set of 115 genomes presented herein were very
consistent, and correlations were often more significant in the
latter set. This consistency gives higher confidence in the trends
reported.

These data suggest that secondary metabolism and energy
conversion rather than general metabolism are disproportion-
ately expanded in larger genomes and thus should explain a large
part of the broad metabolic diversity that characterizes large
genome-sized species. The expansion involved both expansions
of specific COG and de novo acquisitions of new COG (or
pathways), with the latter case being roughly twice as frequent
as the former one (data not shown). On the other hand, the genes
assignable to the remaining metabolism, except nucleotide me-
tabolism, and several cellular processes categories are only
proportionally increased with genome size (similar to the exam-
ple of ABC transporter genes mentioned previously).

Regardless of a proportional or disproportional increase in
metabolic or cellular pathways, large genome-sized species
would need increased regulation to successfully control the
extensive metabolic repertoire they apparently possess under
different growth conditions. Thus, it is not surprising that
regulatory genes, i.e., transcription control, and signal transduc-
tion, dominated the genes that are disproportionately increased
in larger genomes. In addition, many regulation systems are
expected to cross talk, because their genes share high sequence
similarity (paralogous genes of expanded gene families), which
suggests increased complexity in regulation as well. In agreement
with these interpretations, all species with genome sizes #6 Mb
in our set are free-living bacteria that can grow in very diverse
environments, several using alternative electron acceptors and a
great range of substrates for energy production (Table 2).

The negative correlation with genome size of informational
and DNA metabolism categories is equally interesting (Figs. 1
and 5). This trend suggests that a similar number of informa-
tional and DNA metabolism related proteins is able to cope with
an increased number of genes. For instance, there is a relatively
small increase in the absolute number of genes (of !20%) in the
translation category between 2- and 8-Mb-sized genomes. This
may be attributable to there being sufficient informational
processes present and active at any time in the cell. Thus, when
there is an unusual demand for informational proteins because
of a larger genome, their transcription or posttranslational
modification can be regulated accordingly to yield sufficient
more active proteins.

Fig. 4. Differences between Archaea and Bacteria in the relative usage of the
genome. Bars represent the average from 34 bacterial and 12 archaeal ge-
nomes, which have between 1,500 and 3,500 ORFs (to avoid any genome size
effect on the data). Only normalized genomes have been included (see text).
Averages are statistically different by two-tailed t test, assuming unequal
variances and 0.05 confidence level. Functional categories that had %2% of
the genes in the genome are not shown.

Fig. 5. Summary of the shifts in gene content with genome size in prokary-
otic genomes. The bars represent the sum of the COG functional categories,
which showed strong correlation with genome size and are involved in the
same major cellular processes. Only normalized genomes (represented by solid
squares in Fig. 1) have been included. Errors bars represent the standard
deviation from the mean except for the last genome size class, where error
bars represent data range due to a small number of normalized genomes in
this class (three genomes).

3164 ! www.pnas.org"cgi"doi"10.1073"pnas.0308653100 Konstantinidis and Tiedje



A Hypothesis for Large Genomes. Presumably the interactions
between the organism and particular habitat(s) have selected for
genome expansion. Large genomes do not appear to be uncom-
mon in nature (Table 2 and JGI genomes), and hence they must
have value. As noted above, all overamplified gene families are
associated directly or indirectly (regulation) with metabolism.
However, the lack of knowledge of the population sizes and
activities of such species in natural environments does not allow
specific inferences about which environmental factors may have
fostered genome expansion. In contrast, the genome evolution in
endosymbiotic bacteria is much better understood. The relief
from selection for specific pathways and regulation systems along
with population bottlenecks that allow more rapid fixation of
mutations are proposed to determine their genome evolution (1,
20, 24). Also, the higher number of bacterial generations in these
nonnutrient-limiting environments probably facilitates loss of
DNA through spontaneous recombination events at repeated or
mobile sequences (1, 24).

One hypothesis for large genomes consistent with the above
data is that Bacteria with such genomes are more ecologically
successful in environments where resources are scarce but
diverse and where there is little penalty for slow growth. These
are characteristics of soil. In support of this, Mitsui et al. (25) and

Klappenbach et al. (21) found slow-growing oligotrophic "-Pro-
teobacteria to be more dominant in soil. In the former study,
many of these isolates were nonsymbiotic members of the
Rhizobiaceae and Bradyrhizobiaceae (25, 26), families that have
genomes #6–8 Mb. Generation times in soil are thought to be
low, with mean generations measured at three per year (27).

Although this study shows some clear trends between gene
content and genome size, the dispersion around the mean for
many categories suggests that features other than genome size
likely explain what is gained in larger genomes. These traits need
to be explored for a fuller understanding of the interactions
between ecology and genome evolution. This study also draws
attention to the limited number of large genomes sequenced to
date. The possibility that large genomes represent a significant
fraction of the extant microbial world and that they may possess
unique traits missed in the current annotation knowledge is a
major challenge for microbiologists.
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Table 2. Genomic information and ecological niche(s) of species with a genome size >6 Mb

Species Genome size Percent in COG Ecological niche

Bacteroides thetaiotaomicron* 6.26 33.5 Human gut, metabolically versatile
Bradyrhizobium japonicum 9.11 60.4 Soil, rhizosphere; N2 fixing symbiont of legumes
Mesorhizobium loti 7.59 69 Soil, rhizosphere; N2 fixing symbiont of legumes
Nostoc sp. 7.2 58.2 Cyanobacteria, ubiquitous in nature; photosynthetic
Pseudomonas sp. (average of three strains) 6.2–6.4 69–80 Soil, water; opportunistic pathogens of plants and humans
Sinorhizobium meliloti 6.7 63 Soil, mizosphere; N2 fixing symbiont of legumes
Streptomyces avermitilis 9.03 48.8 Ubiquitous in soil; very versatile metabolically
Streptomyces coelicolor 8.67 40 Ubiquitous in soil; very versatile metabolically

*All environmental and nonproteobacteria strains (bold) have %58.2% (vs. an average of 70.3%) of their genes homologous to COG proteins (third column).
This indicates that the overrepresentation of specific lineages (e.g., proteobacteria) and clinical strains in the database has possibly biased our knowledge of
microbial functional gene content.
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