An Intro to the Oceanic Carbon Cycle

= Carbon reservoirs

> The CO, & carbonate system

> The carbon pumps - their
contributions and limitations

* Intro to DOC -history and
controversy

*DOC contribution to Ocean
biogeochemistry

Oceanic Carbon Cycle

Why is C an important element?

- Cellular level - essential for macromolecular synthesis

* Trophodynamics- important in energy flow between
trophic levels.

- biogeochemistry - stoichiometry demands ties C to other
- important nutrient cycles

- green house properties




Global Carbon Cycle
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Anthropogenic rise in CO2

I pCO, has increase from 280 ppm to
384 ppm (2007)

*Increase of 40% over past 250 yrs

Atmospheric CO, at Mauna Loa Observatory

T

1958-1974 Scripps Inst. Oceanography
1974-2008 NOAA/ESRL

Anthropogenic input is ~9 Pg C yr-!
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* Fossil fuel burning
* Cement manufacturing
*deforestation
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Global Carbon Cycle
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The Chemistry of CO, in the Ocean

Dissolution of CO, in seawater undergoes the following reaction:

CO,(gas) + H,O0 = H,CO; = H* + HCO,- = 2H* + CO5?-

The buffering capacity of seawater:
As is CO, dissolved in seawater, only ~1% remains as CO, and
the rest is converted to bicarbonate and carbonate.

90% in the form of HCO;-

9% in the form of CO5?%-
1% in the form of dissolved CO,




Time series of Atm CO,, pCO, and pH
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Andrew G. Dickson

Scripps Institution of Oceanography
University of California, San Diego
La Jolla California USA

Early programs did not have CRM's

+ variability btw analytical group +30 ymol
kg™!

+>1% of total signal i.e. larger than
anthropogenic signal

Andrew Dickson supported by NSF and DOE
+ CRM for DIC and total Alkalinity

* reduced variability to +3 pymol kg-!

resolve increase in TCO, in Surface waters

BATS TCO2 (umol kg-1)

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004




Differences between pCO, atm and pCO, surface
water ...set the potential for air- sea CO, flux

Atm pCO2
+ air sea CO, flux is driven

360 - 380 patm by variability in OCE pCO2

- global ave of pCO2 in

e Surf OCE is ~ 7 patm less
SUET (265 e than atm

150 - 750 patm

Feely et al. 2001

Mean Annual Air-Sea Flux for 1995
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* OCE uptake of ~ 2.2 Pg C y-!




6radients and distribution of CO, (DIC) over depth
controls the role the ocean plays as a CO, sink

DIC (umol kg)
Distribution of DIC in the OCE 0
is controlled by
2 hanisms: =
mechanisms £ 100
£
- Solubility Pump- solubility §
of CO,
500
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photosynthesis & respiration
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. Figure 5
Solubility Pump:
Wind driven circulation
CO; escapes  Wind stress & Cooling ~ CO, invades
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Carlson et al 2001
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Does increased delivery of nutrients from depth have a net
affect on OCE uptake of atm CO,?

Basic New Production Hypothesis Fixed Redfield Ratio
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vertical gradient
in DIC
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Sarmiento and Gruber 2006
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Estimations of
Anthropogenic CO2
concentrations in the
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Units are 1015 g C
fisare e Figure 1
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Figure 1

DOM production and
removal mechanisms

UV Ouxidation
1B.1

In the open ocean....DOM
production is ultimately

constrained by the level of
e Primary production w/in a
system.

nB.1

Sinking Particles
& Aggregates

Carlson, 2002

Brief History and the Controversy of DOC measurements

1909 Piitter - developed first wet chemical combustion
technique with chromic acid ..problems with chlorine
interference

1934 Krogh and Keys- removed chlorine ..first reliable
estimates of DOC

1950s- Soviets started trying high temperature
combustion

1961- Duursma - wet oxidation and coulometric
titration

1964- Menzel and Vaccaro - wet persulfate oxidation
1966 - Armstrong - UV oxidation
1970's - Sharp revisited the HTC method

12



Historical view of oceanic DOC - relatively unvarying pool of
recalcitrant organic matter

02 (umol /kg)
0 50 100 150 200 250 300

PO

Menzel and Ryther 1970

DOC: The controversy... new high concentrations

Sugimura and Suzuki 1988...used new Pt/ alumina catalyst
50- 400% higher than previous estimates

AOU, DOC uM

0 10 20 30
DON, DIN, TDN, uM

Figure9 DON, DOC, DIN, and AOU depth profiles in the western Pacific Ocean at 19°01" N, 134°00’
E (after Fig. 11a of Sugimura and Suzuki (1988), with TDN determined graphically as DIN 4 DON).
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Seattle DOM Workshop 1991
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"We have initiated over a decade long program in ocean carbon
and we have no reliable estimate for DOM....you guys have to

figure this outll”

-Neil Anderson NSF Chem OCE

Fine tuning the instrument, column conditioning, proper blank
correction, implementation of reference materials and

community intercalibrations .
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Use of referencing to resolve small variability
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Home Made .
High Temperature

Combustion Systems (HTC)

Modified Shimadzu - High throughput!!
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DOC and the Oceanic Carbon Cycle

0 10 20 30 40 50 60 70
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Semi-labile DOC - portion of bulk
DOC that is in excess of deep water
DOC concentrations

Who Cares??? Why is DOC/ DOM
important?

Carlson and Ducklow 1996
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Role of mixing and DOC export

Temperature (°C ) and Mixed Layer Depth at BATS

BATS core data
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BATS DOC (uM C)
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Annual Carbon Budget for Upper Ocean
Near Bermuda

Geochemical estimates of new Production
2.9-4.16 Jenkins and Colleagues

Particulate Export
Lohrenz et al 1992
Michaels et al 1994

DOC export

Carlson et al 1994
Hansell and Carlson 2001 -+ more data

Potential importance of DOM stoichiometry and
the biological pump

Refractory loop Semi-labile loo
- Poor in nutrients “Nutrient-poor relative to Redfie
- Extremely rich in carbon - Carbon-rich relative to Redfield

DOM? Co, co,
¢ - Ultraviolet photo-degradation? f

Terrestrial

Surface Refractory DOM
Ocean ~42 uM DOC <«
3,511:202:1

DOM mixing DOM export A

Little decomposition Complete decomposition !

s/ Minor 'new' nutrient source g
Q|(0.3-4% N and 0.02-0.3% P) |2

~ 34 uM DOC
3,511:202:1

Moderate 'new' nutrient source

(13% Nand 11% P) :%

0 M DOC
199:20:1

Adapted from Hopkinson and Vallino 2005
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Biological Pump
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