BioMetals (2005) 18:369-374
DOI 10.1007/s10534-005-3711-0

© Springer 2005

Marine siderophores and microbial iron mobilization
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Abstract

Iron is essential for the growth of nearly all microorganisms yet iron is only sparingly soluble near the
neutral pH, aerobic conditions in which many microorganisms grow. The pH of ocean water is even higher,
thereby further lowering the concentration of dissolved ferric ion. To compound the problem of avail-
ability, the total iron concentration is surprisingly low in surface ocean water, yet nevertheless, marine
microorganisms still require iron for growth. Like terrestrial bacterial, bacteria isolated from open ocean
water often produce siderophores, which are low molecular weight chelating ligands that facilitate the
microbial acquisition of iron. The present review summarizes the structures of siderophores produced by
marine bacteria and the emerging characteristics that distinguish marine siderophores.

Introduction
The iron hypothesis

A third to a half of the worlds fixation of carbon
dioxide occurs in the oceans as a result of photo-
synthetic activity by phytoplankton (Field et al.
1998). Despite the vast surface area covered by
ocean water, the majority of the marine carbon
dioxide fixation occurs in coastal environments. In
many ocean regimes, chlorophyll levels are low
and so too is the level of primary production by
photosynthetic activity, even though these waters
are replete in major nutrients (e.g., nitrate, phos-
phate, and silicate). These so called high-nitrate-
low chlorophyll (HNLC) regions also coincide
with very low iron levels, which range from 20 pM
to 1 nM in surface seawater (Martin & Fitzwater
1988; Martin et al. 1994; Johnson et al. 1997,
Morel & Price 2003). The apparent link between
low primary production and low iron concentra-
tion led to the “Iron Hypothesis” (Martin 1990;
Martin et al. 1991). If true, then it was reasoned
that an influx of iron would not only promote
growth of photosynthetic microorganisms but also

significantly reduce atmospheric carbon dioxide
levels and lead to the export and sequestration of
carbon to the deep oceans.

The region of high primary productivity to the
west of the Galapagos Islands provided evidence
of the effect of natural iron influx. Iron in the
volcanic ash off the Galapagos Islands was being
carried by the prevailing winds and currents fer-
tilizing the waters and promoting growth of pho-
tosynthetic microorganisms. Thus large-scale in vitro
supplementation studies were conceived to deter-
mine whether iron addition would propagate growth
of photosynthetic microorganisms.

The Iron Hypothesis has now been tested at
least nine times on large (~70-100 km?) patches of
ocean water in the equatorial Pacific (Coale et al.
1996 and references therein), the eastern subarctic
Pacific (Tsuda et al. 2003; Boyd et al. 2004), and
the Southern oceans (Boyd et al. 2000; Coale et al.
2004 and references therein). In all cases massive
blooms occurred, depicted by a substantial
increase in chlorophyll levels, a decrease in the
concentration of carbon dioxide at the air water
interface, and a draw down of various bulk nutri-
ents. The persistence of the blooms however, varied
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greatly, from two to greater than 50 days, as did the
amount of carbon sequestered to the deep oceans.
At this point the variation in the bloom persistence
is not entirely understood yet. An important finding
of the iron supplementation expeditions was that
oceanic heterotrophic bacteria (i.e., that grow on
sources of carbon other than carbon dioxide) also
increased in numbers and thus heterotrophic
bacteria compete successfully for iron against
phytoplankton and cyanobacteria.

The iron(III) present in surface ocean waters
has been shown to be fully complexed by an
organic ligand or class of ligands, “L” (Gledhill &
Vandenberg 1994; deBaar et al. 1995; Rue &
Bruland 1995, 1997; Wu & Luther 1995), although
few structural details are known about these ligands
(Macrellis ef al. 2001). An intriguing result of the
IronEx II expedition in the equatorial Pacific
Ocean was the discovery that the concentration of
the organic ligand(s), “L”, increased in a relatively
short time-span, rising to meet the concentration of
added iron. Thus it has been proposed that “L” is
biologically derived (Rue & Bruland 1997). Many
questions arise about the role and significance of
these biologically produced ligands, including a
possible relationship between “L” and microbial
siderophores (see below). Thus we and others have
sought to investigate the molecular mechanisms that
microorganisms use to sequester iron.

Marine siderophores

To compete for iron under iron-limited aerobic
growth conditions, many microorganisms produce
siderophores. Siderophores are low molecular
weight, chelating compounds synthesized by bacte-
ria for the purpose of sequestering iron(III) from the
environment (Albrecht-Gary & Crumbliss 1998;
Winkelmann 2002; Crosa et al. 2004). While hun-
dreds of structures of siderophores from terrestrial
microorganisms have been reported, the study of
open ocean bacteria that produce siderophores is
relatively new and thus far fewer structures of
marine siderophores are known. Nevertheless, two
prominent structural features characterize the
majority of the marine siderophores discovered so
far. One class of marine siderophores contains o-
hydroxycarboxylic acid moieties, in the form of f-
hydroxyaspartic acid or citric acid, which, when
coordinated to Fe(Ill), are photoreactive in the
natural sunlight conditions of the mixed layer of the

upper ocean (Barbeau er al. 2001, 2002; Bergeron
et al. 2003) (see aerobactin and the pertrobactins in
Figure 1 and the marinobactins and aquachelins in
Figure 2 below). The other class of marine sidero-
phores that has arisen at this early stage of investi-
gation is comprised of suites of amphiphilic
siderophores that contain a unique peptidic head-
group appended by one of a series of fatty acids
(Martinez et al. 2000, 2003) (see Figure 2 below).

Photoreactive Fe(Ill)-siderophore complexes

The prevalence of siderophores containing
photoreactive groups when coordinated to Fe(I1I)
is a newly recognized and intriguing feature of
many marine siderophores. Some marine sidero-
phores contain citrate such as aerobactin (Vibrio
sp. DS40MS5, (Haygood et al. 1993)), petrobactin
(Marinobacter hydrocarbonoclasticus, (Barbeau et al.
2002; Bergeron et al. 2003)) and petrobactin-SO;
(Hickford et al. 2004) (Figure 1). Other marine
siderophores such as the alterobactins A and B,
the aquachelins and the marinobactins contain
p-hydroxyaspartic acid. Photolysis of Fe(I11) com-
plexed to a-hydroxycarboxylic acids in the ultra-
violet generates an oxidized ligand and Fe(II)
(Figure 1). Thus the photoreactivity of these ferric
siderophores in the upper ocean potentially affects
the bioavailability of iron. Ferrous ion could be di-
rectly taken up by microorganisms or, in aerobic
environments, could be oxidized to Fe(III) and rech-
elated by another siderophore or by the photoproduct
itself (Barbeau ef al. 2001, 2002; Bergeron et al. 2003;
Hickford et al. 2004). Thus, the cycling of iron in the
upper ocean could be moderated by the photolysis
of photoreactive siderophore ligands that contain
the a-hydroxycarboxylic acid moiety.

Citrate-containing siderophores have been
known for a very long time, although the bacteria
producing these siderophores are mainly enteric
and not likely to experience the UV light condi-
tions required for photolysis; thus the photoreac-
tivity has not been reported until recently
(Barbeau et al. 2001, 2003).

Photolysis of the Fe(Ill)-aquachelin complexes
in sunlight results in ligand oxidation and trun-
cation as well as reduction of Fe(Ill) to Fe(Il)
(Barbeau et al. 2001).

The same peptide fragment is formed whether
each of the aquachelins is photolyzed separately or
photolyzed as the physiologically produced mix-
ture of aquachelins A—D. The only amino acid lost
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Figure 1. Citric-acid-containing siderophores. Aerobactin is produced by marine (Haygood et al. 1993) and terrestrial bacteria. Pet-
robactin and petrobactin sulfonate are produced by a marine bacterium (Barbeau et al. 2002; Bergeron et al. 2003; Hickford et al. 2004).
References for the other siderophores are Acinetoferrin (Okujo et al. 1994); Nannochelin A (Kunze et al. 1992); Rhizobacterium 1021
(Persmark et al. 1993); Staphyloferrin B (Haag et al. 1994); Achromobactin (Mnzinger et al. 2000); Vibrioferrin (Yamamoto et al. 1994).

in the photoreaction is f-hydroxy-aspartate acid.
The peptide photoproduct retains the two hy-
droxamate groups and the ability to coordinate
Fe(IIl) (Barbeau et al. 2001). Moreover, only
catalytic amounts of Fe(IIl) are required to effect
the complete oxidation of the aquachelins in aer-
obic conditions.

Petrobactin and petrobactin-SO5 are citrate-
derived marine siderophores with unique 3,4-di-
hydroxy catecholate appendages. Photolysis of the
Fe(IIl)—petrobactin complex results in photode-
carboxylation of the siderophore ligand and
reduction of the iron (Barbeau et al. 2002).

The ferric complexes of the other f-hydroxyas-
partic acid-containing marine siderophores (e.g.,

alterobactins A and B, the marinobactins, etc.)
and the other citrate-containing siderophores are
currently under investigation. In addition the
iron(I1T) complexes of pseudoalterobactins A and B,
which are chemically related to the alterobactins
(Kanoh et al. 2003), as well as other f-hydroxy-
aspartic acid-containing siderophores (e.g. orni-
bactins, corrugatin, etc; see below) are also expected
to be photoreactive.

While early results show that a-hydroxycarb-
oxylic acid-containing microbial Fe(III) chelates
can facilitate photochemical cycling of iron in
ocean surface waters (Barbeau et al. 2001, 2002,
2003), the fate of the photolytically produced
iron(I) remains uncertain, as does the fate of the
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Figure 2. Families of amphiphilic marine bacteria (Martinez ez a/. 2000, 2002). (a) marinobactins, (b) aquachelins and amphibactins.

photooxidized siderophore ligand. Because the
hydroxamate and catecholate moieties are not
photoactive when coordinated to Fe(III) (Barbeau
et al. 2003), the photooxidized siderophores
coordinate Fe(III) with appreciable affinity. Initial
results suggest that iron bound by the oxidized
siderophore ligand may be more available for
biological uptake by bulk microorganisms, since
the conditional stability constant of Fe(III)-pho-
toproduct is reduced relative to that of the original
ferric ligand (Barbeau et al. 2001).

Amphiphilic siderophores

The aquachelins, marinobactins and amphibactins
are distinct families of amphiphilic peptidic sid-
erophores produced by different genera of marine
bacteria (Figure 2) (Martinez et al. 2000).

These siderophores contain a peptidic head
group that coordinates iron(III) as well as one of a
series of different fatty acids that is appended at
the amine terminus (Martinez et al. 2000, 2003).
The amphiphilicity of each of these siderophores is
defined by both the peptide size (e.g., six, seven or
four amino acids, respectively) and the fatty acid
chain length (e.g., C12—C18). The amphibactins
with a short peptide head group of only four
amino acids and relatively long C18 fatty acids
remain cell associated and are extracted from the
bacterial pellet during isolation in contrast to the
marinobactins and aquachelins which are isolated
from the supernatant following centrifugation of
the bacterial culture to pellet the cells. Another

smaller suite of amphiphilic peptide siderophores
are the ornibactins, isolated from Burkholderia
cepacia, a terrestrial bacterium (Stephan et al.
1993; Meyer et al. 1995). The ornibactins, like the
marinobactins and aquachelins contain f-hydroxy
aspartic acid, but are distinguished by their quite
short fatty acid appendages: C4, C6, and C8.

Relatively few terrestrial bacteria have been
found to produce suites of amphiphilic sidero-
phores, although in addition to the ornibactins
produced by B. cepacia (Stephan et al. 1993;
Meyer et al. 1995), mycobacteria produce both
suites of lipophilic siderophores and amphiphilic
siderophores (Gobin et al. 1996; Ratledge & Dale
1999; Ratledge et al. 1999 ). In addition to the
mycobactins, other known cell-associated sidero-
phores include the structurally related formobac-
tins (Murakami et al. 1996), nocobactins (Ratledge
and Patel 1976), and amamistatins (Suenaga et al.
1999; Kokubo et al. 2000).

Acinetoferrin and rhizobactin 1021 are two
amphiphilic siderophores that also contain a cit-
rate backbone. These siderophores are each com-
posed of citrate, 1,3-diaminopropane, and
monounsaturated acyl appendages. Acinetoferrin
is produced by the opportunistic pathogen Aci-
netobacter haemolyticus (Figure 1; Okujo et al.
1994), however it is reported as a single amphi-
philic siderophore with two short C8 fatty acid
groups. Rhizobactin 1021 is produced by the
nitrogen fixing alfalfa symbiont Rhizobium meliloti
1021; it is reported also as a single siderophore
with one C10 fatty acid appendage (Figure 1)



(Persmark et al. 1993). Finally, corrugatin pro-
duced by Pseudomonas corrugata (Risse et al.
1998) is one other amphiphilic peptide siderophore
that is reported as a single siderophore, as opposed
to a suite like the marinobactins, aquachelins,
amphibactins and ornibactins:

Investigations of the amphiphilicity of the ma-
rinobactins, the amphibactins and acinetoferrin to
date have centered on the self-assembling charac-
teristics (e.g. the marinobactins (Martinez et al.
2000) and the partitioning of the marinobactins,
amphibactins and acinetoferrin into 1,2-dimyri-
stoyl-sn-3-glycero-phosphocholine (DMPC) vesi-
cles (Xu et al. 2002; Fadeev et al. 2004; Luo et al.
2005). As expected, the siderophores with longer
fatty acids partition more than those with shorter
fatty acids and siderophores with saturated fatty
acids partition more than those with the cis double
bonds, but otherwise the same chain length.
However, unexpectedly the apo-marinobactin E
shows a 50-fold increase in partition coefficient
over the Fe(III) marinobactin E complex (Xu ef al.
2000). This increase partitioning of apo over
Fe(IlI)-siderophore has also been observed with
the acinetoferrin (Luo et al. 2005). The biological
significance of these partition trends between apo
and the ferric complexed is under investigation.

Conclusion

Based on the results of the mesoscale iron expe-
dition experiments, many now refer to the “Iron
Hypothesis” as the “Iron Theory”. Iron added to
HNLC regions of the worlds oceans has clearly
been shown to promote growth of autotrophic as
well as heterotrophic microorganisms, yet these
“iron expedition” results also raise many new ques-
tions. Of principal interest in the vein of this review
is the question of the molecular mechanisms by
which marine microorganisms compete for the
added iron. We have found a preponderance of
a-hydroxycarboxylic-acid-containing siderophores
produced by open ocean bacterial isolates as well
as a prevalence of amphiphilic siderophores. The
amphiphilicity is an intriguing feature that could
function to keep siderophores in close contact with
the bacteria or to increase surface reactivity, such
as on iron-containing particles. The wide diversity
of marine bacteria from which amphiphilic sidero-
phores have been isolated suggests this property
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evolved as a common iron acquisition strategy for
marine bacteria, the details of which remain to be
elucidated (Martinez et al. 2003). The photoreac-
tivity of the ferric complexes of a-hydroxycarboxylic
acid-containing siderophores also suggests this
property evolved as an advantageous strategy for
iron acquisition. We look forward to the results of
the ensuing experiments on the biological signifi-
cance of these properties.
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