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The Redfield Ratio
C:N:P = 106: 16: 1

106CO, + 122H,0 + 16HNO, + H,PO,

(CH2O) 106(NH3) 1 6(H3PO4)

detritus vs. phyto vs. bacteria?
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Nitrogen fixation

N, + 8H* + 8e- + 16 ATP — 2 NH; + H, + 16 ADP + 16P,
Nitrogenase

* “Fixing” broken N,

* Energetically very expensive — N, has triple bond
» Nitrogenase is irreversibly inactivated by oxygen
* Most N, fixers form heterocysts

* Requires P, Fe, and trace metals (Mo, Co, V)

Two morphological forms

Colonial — 100s cells/trichome and 100s trichomes/colony
Traditionally considered the dominant N fixer in the ocean
Found in tropical and subtropical waters




1987 1 X

Trichodemsium mystery
Non-heterocystous
Photosynthesis N, fixation

Co, > 0, N, > NH,*

nitrogenase

Temporal or spatial segregation?
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Fig.3. TEM Images of ~2 cells from a Trichodesmium filament after (4) 8-h and (D) 24-h Incubation with H13CO; and 15N,. Correlated NanoSIMS Images
demonstrate percentage fixed '*N after (5) 8 h and (£) 24 h, percentage fixed '3C after (C) 8 h and (F) 24 h. Arrows Indicate correlation between cyanophycin
granules Identifled by TEM and '*N enriched hotspots evident In NanoSIMS Image. (Scale bar, 1 xm.) Becausa NanoSIMS analyslsIs a destructive process, distinct
cells were Imaged for the 2 different time points.

High resolution-secondary ion mass spectrometry (Nano SIMS)

Supports temporal segregation!

Finzi-Hart et al. 2009 PNAS

Zehr et al. 2001 Nature
Unicellular cyanobacteria that expressed nitrogenase at HOT

Montoya et al. 2004 Nature
Rates of N fixation by the single cell forms can equal or
exceed rates by Trichodemsium
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Ammonification -

the conversion of DON or PON to NH,*

Two types:

1. Bacterial -
a. Traditional view of bacterial decomposition
b. Was considered primary source of NH,*
(Now primary source if believed to be grazers)

2. Photochemical (abiotic!)
a. More recently recognized source
b. Importance of process is still debated
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The Ocean
AN NN NN

Euphotic zone light - ~little N

Aphotic zone no light - lots N




Nitrification

NH,* > NO, >NO,
Ammonium oxidizers: Nitrite oxidizers:
very slow growing faster growing
sensitive to light more sensitive to light

* Nitrifiers are chemolithoautotrophs.
» Maximum rates occur near the base of the euphotic zone.
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Nitrification
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NO; —NO, — NH,*— PN or DON

Nitrifying bacteria - or is it??




Karner et al.
2001 Nature

39% of the

picoplankton in
the mesopelagic
at HOT are Bacteria
archaea.
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Figure 1 Contour plots of relative abundances with depth of bacteria and pelagic crenarchaeota as compared with total microbial abundance at each depth. Total cell
crenarchaeota during a 1-yr sampling effort at the Hawai'i Ocean Time-series station, abundance was assessed using the DAPI nucleic acid stain. Bacteria and archaea were
ALOHA, in the North ical gyre. White dots indicate dates and where using whole-cell fRNA targeted fluorescent in situ bybridization with
samples were collected. Contour lines are percentages of bacteria and pelagic fluorescein-labelled ide probes. See als Information.

Konneke et al. 2005 Nature
Isolated a marine crenarchaeota that can
grow by aerobically oxidizing NH," to NO,".

Ingalls et al. 2006 PNAS
An isotopic mass balance of radiocarbon
signatures of archaeal membrane lipids
indicates that 83% of their carbon is obtained
autotrophically at depth.
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Denitrification

Lost to
system

/|

NO; — NO, —NO — N,0 —

nitrate reductase  nitrite reductase  nitric ox. reductase nitrous oxide reductase

* N is used as an electron acceptor, not as a N source
* Lots of organisms can reduce NO;

* Fewer can reduce NO,"

* All the enzymes are induced by anoxia

* NO is very labile and does not accumulate




Denitrification A

NO, —NO, —NH,*— PN or DON

NO, — NO —N,0 — N, ”

Canonical denitrification (- 0,)
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ANAMMOX
ANaerobic AMMonium OXidation

NO, + NH, — N,

* First described in a wastewater treatment plant in the
Netherlands in 1995.

* Oxygen inhibition is reversible.

* Thandrup & Dalsgaard (2002) published the first marine data
(sediment study)

ANNAMOX

NO; —NO, — NH,*— PN
N\

NO, — NO —N,0 — N,




Canonical denitrification? OR Anammox??

NO, + NH; — N,

obligate anaerobic autotrophs

NO, — NO,, — NO N,

facultative anaerobic heterotrophs

Greenhouse Gases

The most abundant greenhouse gases
(in order of relative abundance)

* water vapor
* CO,

* methane
*N,O

* 0Zone

* CFCs
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What’s the best way to make a
living in a given place?

Reaction Energy yield (kcal)
Aerobic respiration 686
Denitrification 545 (-0,)

Nitrification NH," oxidation 66
NO," oxidation 17

N, fixation -147




Ammonification

3

Uptake and |
regeneration °
in the

surface ocean =

&—— Denitrification ———» N, fixation
—>

Liebig’s Law of the Minimum (1840) -
the resource in smallest supply
relative to what the organism needs is
the limiting factor.

Growth versus biomass




A) Diotom Growth Limitation

Factor limiting
growth rates
during summer

ENitrogen Miron MPhosphorus = Silicon
HLight  ®WTemperature NReplete
B) Small Phytoplankton Growth Limitation

C) Diozotroph Growth Limitation

Moore et al. 2004 GBC

UPTAKE OF NEW AND REGENERATED FORMS OF
NITROGEN IN PRIMARY PRODUCTIVITY!

R. C. Dugdale and ]. J. Goering
Institute of Marine Science, University of Alaska, College 99735

Production can be defined as new or
regenerated based on the source of the
nitrogen that fueled it.

Dugdale & Goering 1967 L&O
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NO; NH\+

4
JRe generated

nitrogen nitrogen




15NH4+

Net atom% PN

Uptake = % [PN]
Rate atom % NH," x Time

Source pool

atom % of target
Rate = x [target]
atom % x Time
of source
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Particulate organic matter flux and planktonic
new production in the deep ocean

Richard W. Eppley

Institute of Marine Resources, A-018, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093

Bruce J. Peterson

E Center, Marine ical Laboratory, Woods Hole, Massachusetts 02543

Ecosy

New production over appropriate spatial
and temporal scales equals export flux.

Eppley & Peterson 1979 Nature




New production
New + Regenerated Production

f-ratio

NO," uptake
NH," + NO; uptake

f-ratio
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The Redfield Ratio
C:N:P = 106:16: 1

106CO, + 122H,0 + 16HNO, + H,PO, —
(CH,0),6(NH;),,(H;PO,)







Is the amount of N
in the ocean in
steady state?
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Figure 1.15 Schematic budget of the global nitrogen cycle in preindustrial times (black) and how
it changed as a result of human intervention (red). Fluxes are in units of Tg N year™ and inventories
(bold italics) inTg N. The flux estimates are based on Gruber and Galloway (2008).
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Figure4. Nr creation and distribution by ocean basin, Tg Nyr~', in the early 1990s.

Galloway et al. 2004 Biogeochemistry

Table 1.3 Present-day (ca 1990) Global marine nitrogen budgets of Codispoti et al. (2001),

Gruber (2004), and Galloway et al. (2004)

Process Codispoti et al.” Galloway et al.*" Gruber®
2001 2004 2004
Tg N year™ Tg N year™ Tg N year™
Sources
Pelagic N fixation 117 106 120 % 50
Benthic Nj fixation 15 15 15 £ 10
River input (DON) 34 18° 35 4+ 10
River input (PON) 42 30¢ 45 £ 10
Atmospheric deposition 8 33 50 &+ 20
Total sources 202 55
Sinks
Organic N export 1 1
Benthic denitrification 300 206 180 £ 50
Water column denitrification 150 116 65 £ 20
Sediment Burial 25 16 25+ 10
N,O loss to atmosphere 6 4 442
Total sinks 342 (275 55

“ See the original publications for details, e.g., Galloway et al. (2004), and Codispoti et al. (2001).
b Listed are the central values reported by Galloway et al. (2004) (see Table 1.1 and Fig. 1.1 of their publication).
“ Galloway et al. (2004) lists only the total river flux. I assumed that about two thirds of the total is PON, and one

third 1s DON.

Gruber 2008 N in the Marine Env.
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