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The lecture focuses on applications of chemical sensors on
autonomous platforms to measurement of rates of carbon,
oxygen and nitrogen cycling.

1) Carbon, oxygen and nitrogen based production observed in
coastal waters.

2) The balance of oxygen production and consumption in
oligotrophic waters.

3) Carbon export on the scale (almost) of an ocean basin.

4) Coast again.

For a general chemical sensor review see: Johnson, K. S., J.
A. Needoba, S. C. Riser, and W. J. Showers. 2007.
Chemical sensor networks for the aquatic environment.
Chemical Reviews, 107, 623-640, doi 10.1021/cr050354e.









SAleNTIC

Latest

2007-03-16 13:00:00 UTC

Temperature

0.85

c

Current Out/In 0.176 m/s

(+/-)

Salinity 30.79
Conductivity | 2.65 | S/m
Nitrate | 1.4 M
Turbidity | 0.83 | NTU
Dissolved 02 8.91 | mi/l
02 Saturation | 8.09 | ml/l
Dissolved | 8.32 | qsDE
Organics

Chlorophyll [ 2.53] pay/l
Battery | 12.3 | volts
Voltage

E{.’m gle ERRTH | E WAP Device |
LOBO Cam

LOBO Land/Ocean Biogeochemical Observatory 1

LOBOCAM

LOBO-0010 Northwest Arm, Halifax, Canada

The LOBO comes complete with floating platform,
power and wireless telemetry system, integrated
sensaor suite, autormated processing software and web

based data visualization and display software. Just deploy the platforms, install the software,
configure the system using a simple GUI, and your data is live an the web. The system is
designed for both rapid deployments and long term monitoring, making it easy for users to

install and operate.

LOBO available now
as commercial product
from Satlantic. Easy to
link LOBO data
systems and observe
coastal
biogeochemistry on
large scales.
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LOBO chemical sensor network: www.mbari.org/lobo
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Data goes directly to Internet and is in the public domain. Real-
time QC applied. http://www.mbari.org/lobo

) LOBOVIZ Version 3.0 - Mozilla Firefox

File Edit View History Bookmarks Tools Help
<EI v v @ fu} |£§ http://woawnw.mbari.org/lobo/lobaoviz.htm |‘| EP] |'| S
& MBARI - LOBOVIZ & Chem Sensors M1 ISU... €& LOBO Home & LOBO Data & JUL_DAY & Periodic Table of Elem... o8 Microsoft Outlook Web... »
Y
L L L L
LOBOYViz 3.0 - LOBO Network Data Visualization
Quick Instructions View a demonstration of LOBOViz Network description page
Select Location(s) Select one X vanable Select Y vanable(s) Autoscale X & ¥ ax
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L02 Box Model
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Annual cycle of oxygen modeled near Kirby Park

500.0

and observed on LO2 mooring.
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Full Mty. Bay tide range. 0/402 hrs < 100 uM O,
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Annual cycle of respiration by sediment community (excludes
plants) — clams, worms, meiofauna, bacteria...... Caffrey data
roughly similar but does not capture wetland/intertidal processes.
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Elkhorn Slough, CA, L02

Plum Island Sound, MA, USA

Seine River estuary, France

Sacca di Goro (Po River Delta), ltaly
Bojorquez Lagoon, Mexican Caribbean
Tidal Creeks, North Carolina, USA (SOF)
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Boston Harbor, MA, USA

Chesapeake Bay, USA (SOD)
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Annual cycles of pri. prod. on bottom and in water column.
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The take home message: it's now possible to instrument
the world ocean with a reasonably low-cost chemical
sensor network that would give us the spatial and temporal
variability of net community production, carbon export,
nutrient flux...
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Climatic Warming and the Decline of
Zooplankton in the California Current

Dean Roemmich and John McGowan

Since 1951, the biomass of macrozooplankton in waters off southern California has
decreased by 80 percent. During the same period, the surface layer warmed—by more
than 1.5°C in some places—and the temperature difference across the thermocline
increased. Increased stratification resulted in less lifting of the thermocline by wind-driven
upwelling. A shallower source of upwelled waters provided less inorganic nutrient for new
biological production and hence supported a smaller zooplankton population. Continued
warming could lead to further decline of zooplankton.

The CalCOFI time series. Not very
many ocean time series and most
sparsely sampled in time.

Ken’s rule of thumb — highest
achievable sampling frequency is
where cost of ship time = cost of
science.
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Global satellite time series, but only measure
|_ ETT E R S ocean color and infer productivity.

Climate-driven trends in contemporary

ocean productivity

Michael J. Behrenfeld’, Robert T. O'Malley’, David A. Siegel”, Charles R. McClain®, Jorge L. Sarmiento?,
Gene C. Feldman®, Allen J. Milligan®, Paul G. Falkowski®, Ricardo M. Letelier’ & Emmanuel S. Boss’
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A fundamental question: what is the metabolic balance of the open
ocean? Net autotrophic (produces oxygen and organic carbon) or

Respiration rates in bacteria
exceed phytoplankton
production in unproductive
aquatic systems

Paul A. del Giorgio*, Jonathan J. Cole*
& Andreé Cimblerist

* Institute of Ecosystem Studies, Box AB, Millbrook,

New York 12545-0129, USA

T Department of Biology, McGill Univesity, 1205 Dr Penfield, Montreal,
Quebec H3A 1B1, Canada

PrankTONIC bacteria are a fundamental component of the organic
carbon cycle in aquatic systems'. Organic carbon consumption by
planktonic bacteria is the sum of bacterial production (BP) and
bacterial respiration (BR). It is now estimated that 30-60% of
phytoplankton production (the amount of inorganic carbon fixed
by phytoplankton photosynthesis, corrected for phytoplankton
respiration) in marine and freshwater systems is processed by
bacteria'”. These estimates of carbon flow through bacteria
are conservative, however, because losses due to bacterial
respiration are seldom directly measured*’. We report here
that bacterial respiration is generally high, and tends to exceed
phytoplankton net production in unproductive systems (Iess than
70to 120 g carbon per litre per day). A large proportion of the
world’s aquatic systems have phytoplankton productivities below
this value®, Bacterial growth efficiency (BGE) is the result of BP
and BR[BGE = BP/(BR + BP)]. Comparisons of our models of
bacterial respiration with published models of bacterial
secondary production’” show that bacterial growth efficiency
must range from less than 10% to 25% in most freshwater and
marine systems, well below the values commonly assumed in
many current ecological models'**’, The imbalance between

NATURE - VOL 385 - 9 JANUARY 1997
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net heterotrophic (consumes oxygen and organic carbon)?

The CO, Balance of
Unproductive Aquatic
Ecosystems

Carlos M. Duarte* and Susana Agusti

Community respiration (R) rates are scaled as the two-thirds power of the gross
primary production (P) rates of aquatic ecosystems, indicating that the role of
aquatic biota as carbon dioxide sources or sinks depends on its productivity.
Unproductive aquatic ecosystems support a disproportionately higher respi-
ration rate than that of productive aquatic ecosystems, tend to be heterotrophic
(R = P), and act as carbon diaxide sources. The average P required for aquatic
ecosystemns to become autotrophic (P = R) is over an order of magnitude
greater for marshes than for the open sea. Although four-fifths of the upper

ocean is expected to be net heterotrophic, this carbon demand can be balanced

by the excess production over the remaining one-fifth of the ocean.

Aquatic ecosvstems cover 70% of Earth’s sur-
face (I} and contribute 45% of the global pri-
mary production (2). Yet, the role of their biota
in the global CO, budget remains a subject of
debate (7-5). Many freshwater ecosystems act
as OO, sources (6): in contrast, oceanic ecosys-
tems are assumed to act as OO sinks (7, &)
This assumgpstion has been challenged by calcu-
lations suggesting that the coastal ocean may be
net heterctrophic (¢} and by the finding that
bacterial metabolism exceeds phytoplankton
production in unproductive waters (1), which

Centro de Estudios Avarzados de Blanes, Consejo
Superior de Investigaciones Cientificas, Cami de Santa
Barbara s/m, 17300 Blanes, Girona, Spain.

*To whom comespondence should be addressed.

make up =30% of the ocean. These conclu-
sions are based on indirect calculations and
controversial assumptions (F). Here, we com-
pare the gross primary production (F) and res-
piration (R) rates of aquatic communities to
elucidate whether the biota of aquatic ecosys-
tems acts as net CO; sources (R = P) or sinks
(R = P). We compiled data obtained over the
past five decades from studies in which oxvgen
evolution was used as a surrogate for carbon
fluxes (1)

Community metabolism varied by over four
orders of magnitude across aquatic ecosystems
(Table 1). Marshes tended to be more produc-
tive than other aquatic ecosvstems, whereas
open sea communities showed the lowest pro-
duction and respiration rates (Table 1). The

SCIENCE  www.sCiencemag.org



The balance of plankton

respiration and
photosynthesis in the
open oceans

F. J. le B. Williams

MATURE | VOL 384 |2 JULY 1558

School of Ocean Sciences, University of Wales, Bangor LL59 5EY, UK

carbon balance. There is no evidence of the large regional |

imbalances observed previously®. 1 conclude that the form of

data analysis is critical.
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Regional Carbon Imbalances
in the Oceans

Recent studies (7, 2) have suggested that
respiration exceeds photosvnthetic oxygen
production in large areas of the oceans. If
correct, the conclusion has profound implica-
tions for our understanding of the oceanic
carbon eycle. C. M. Duarte and 5. Augusti
mmanaliidea Hhat Frsae Ffihe AF $tlha mammes aee s

Peter . le B, Williams

David . Bowers

Marine Sciences Laboratory,

School of Ocean Sciences,

University af Wales,

Bangor LL39 SEY, United Kingdom

E-mail: pjilwi@bangor.ac.uk

is the gross primary production rate. This eq
tion is an unsatisfactory model when extray
lating across ecosystems of widely diffen
productivities because the term “a”™ is nof
constant, but dependent on the scale of lo
photosynthesis [table | in the report (2)]. T
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University of Marvland Center for
Environmenial Science,
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review

Paul A. del Giorgio®+ & CGarlos M. Duarte ++

* Dépnmncnr des scierces biologigues Umiversite du Quebec a Montrenl, CF 8888, suce Cemvire Ville, Momiréal, Québee H3C 3P8, Canada
LIMEDEA (CSIC-UIBR), Instituio Mediterrdnen de Estudios Avanzades, C/Miguel Margués 21, 07190 Eporles (Idas Baleares), Spain

t These auihors comiributed equally to this work

A key question when trying to understand the global carbon cycle is whether the oceans are net sources or sinks of carbon. This
will depend on the production of organic matter relative to the decomposition due to biological respiration. Estimates of respiration
are available for the top layers, the mesopelagic layer, and the abyssal waters and sediments of various ocean regions. Although
the total open ocean respiration is uncertain, it is probably substantially greater than most current estimates of particulate organic
matter production. Nevertheless, whether the biota act as a net source or sink of carbon remains an open guestion.
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Global carboncycle et et th et e e r s et s o s

: David M. Karl*, Edward A. Laws™,
MEtahDIIC balance Uf thE Paul Morris*, Peter ]. leB. WilliamsT,

Upen sea Steven Emerson¥
*Department of Qreanography, University of

he rise of oxygenic photosynthesis Hawaii, Honolulu, Hawaii 36822 USA

nearly three billion years ago led to the o-mail: dkarl@hawaii adu

accumulation of free oxygen and to the tSchool of Crean Sciences, University of Wales,
subsequent diversification of life on Earth; Bangor LL59 5PP, UK
today, nearly half of all oxygen production +School of Oreanography, University of Washington,
derives from the photosynthetic activities of Seattle, Washington 28195, 17584

marine phytoplankton’. The conclusion that
the open sea — and therefore much of our
planet’s surface —— is in a net heterotrophic
metabolic state” is enigmatic and is a first-
order question in the global carbon cyele, as
discussed by del Giorgio and Duarte’. Our




The Light Bottle/Dark Bottle or Oxygen method of
determining primary production:

bugy

6 CO, + 12 H,O (+ sunlight) --> C;H,,0, + 6 O, + 6 H,0

About 1 mole of oxygen produced for each mole of
carbon incorporated into organic compounds. Oxygen
traces primary production and respiration.
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Net community production and metabolic balance at the
oligotrophic ocean site, station ALOHA

Peter J. le B. Williams™* . Paul J. Morris® . David M. Karl®
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To test the hvpothesis that in ohgotrophic areas of the ocean respiration excesds production, a 12-month study was
undertaken of in vitro-determined net oxveen productuon and consumption in the top [30m of the water column at the

extreme oligotrophic site, Station ALOHA, in the North Pacific nubjﬂlnmﬂ_ﬁsﬂlhﬂluﬂ,mmuhmmhﬁ_ﬁmgr

column was ohserved to be in metabolic deficit, the calculated cumulative shortfall being 9+1.7mol Oym™a™"
(approximately 100g Cm *a™"), an amount equivalent to 0% of measured production (annual estimated rates of

production and consumption were, respectively, 22 and 31 mol Osm™a™").

In summary, we ...... observe a deficit in oxygen (and thus organic carbon) production
equivalent to about .... about 40% of measured production. We are inclined to the view
that this deficit in part results from a limitation of the in vitro approach in that it fails to
take adequate account of the intermittent nature of primary production.
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Ocean metabolism observed with oxygen sensors on
profiling floats in the Pacific

A collaboration with Steve Riser, UW SasS
SN f / /

6 -12 hours at surface
to transmit data to satellite

!
&

! i

: Descent to depth
1 ~10 emi/s (~6 hours)
1 Salinity & Temperature
1 profile recorded during ascent

1 ~10 cm/s (~6 hours)
I

Total cycle time 10 days

« >100 UW oxygen floats deployed in
Pacific since 2002
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profile from greater depth
2000 db (2000m)

Circuit boards &
satellite transmitter
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Stability disk

motor
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Hydraulic pump
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Oceanographic Partnership Program ,

Promoting Partnerships for the Future of Oceanography \7




5219 Argo profiles with O, in the past year.
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Number of Argo O2 profiles/year

Number of O, profiles per year is
doubling every 15 months

2002

Profiles/y = 11.03 *
(Year-2001)"3.3232

2004 2006 2008
Year



Data available for (almost) all O, floats at:
http://usgodael.fnmoc.navy.mil/ftp/outgoing/argo/
ftp: //ftp Ifremer. fr/pub/publlfremerlargo
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http://usgodae1.fnmoc.navy.mil/ftp/outgoing/argo/

Oxygen sensors on
profiling floats have
proven to be
exceptionally stable.
The floats park at
1000 m and little
fouling occurs.

Noisier at 200 m, but
noise (1 standard
deviation) is the same

lines. That's real
variability. Important
point is there is NO
DRIFT at 200 m, just
below the euphotic
zone.
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An Aanderaa oxygen optode on a vertical profiling float in the North Atlantic is
stable to 295.0+0.7 umol/L over nearly two years at 1800 m depth (Kortzinger et
al., 2006; Tengberg et al., 2006). Much of the oxygen variability may be real!!!
These sensors could be precise to 0.1%. That's fantastic!!!!
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Trajectory over
3 years for
float 0894
(WMO
#4900093)
near HOT,

500m

and float 1326
(#5900420) In
the South

Pacific gyre
near????
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Pitcairn Island!
Population of 45.

The islanders are
descendants of the
Bounty mutineers and
the Tahitians who
accompanied them in
1790.

HOT and POT - the
Pitcairn Ocean Time-
series.
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2006 Average Ocean Chlorophyll (MODIS). Not many people
and not many phytoplankters, either.
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http://oceancolor.gsfc.nasa.gov/SeaWiFS/IMAGES/chlor_colorbar.gif

3 years of O, data near HOT Oxygen [pmol kg ]
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Oxygen residuals from least squares fit line at 78 m to 3/4 year of HOT data.
A normal distribution with standard deviation = 1.5 pumol/kg.

Random analytical error. NO EVIDENCE FOR EPISODICITY IN MOST OF
THE YEAR!
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Net Community Production (mmol C m™ y")
o)
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Vertically integrated
Net Community

29 Production at HOT =

1.6£0.2 mol C/m?3ly.

Keeling et al. (2004)
summarized 11 other
measurements that
average 1.9+0.6 mol
C/m3ly.

At 22 S, vertical integral
of NCP = 0.9£0.4 mol
C/m?ly. About %2 the
magnitude of NCP at
HOT, as expected.



Cycle of Dissolved Inorganic Carbon at surface looks

very similar to O, cycle below mixed layer. DIC

equilibrates with atmosphere 10x more slowly than O.,.
KEELING ET AL.: SEASONAL CYCLES AND TRENDS AT STATION ALOHA

1988 1990 1992 1994 1996 1998 2000 2002

1990_||||III|||I|||||||||III|III|II||II||III|III| II|III|III‘III_
_— E {.}’ ¥ 0 ¢ =
2 1980 B 3atl b dlo—
31970:_ o 8 Y !
O = ed W S A" ] ’
_1960__ \ _ | & ! ® 0-20m —
3 - , " A 20-50m :

1950 — ° —

Solution to measuring annual cycles near the surface
would be a good pH sensor on a float.
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pPH sensors allow TCO2 and NCP to be estimated in
mixed layer: lon Selective Field Effect Transistor -

ISFET

P Bergveld/ Sensors and Actuators B 88 (2003} 1-20
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Fig. 3. Schematic representation of MOSFET (a), I5FET (b}, and electronic diagram (c).
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O5 (umol/kg)

The ocean is autotrophic/has net positive oxygen and
organic carbon production even in the regions with lowest
concentration of plants. The real question is where do the

nutrients come from that support this plant growth?
Production may have episodic events, but episodes not
required to sustain positive oxygen production.

POT
- 220 e e -
220 | 87 m
- ) 210 B T
: 2
210 =
' £
[ £ 200
200 ~
: ° 190
' a :
190 beeu o e '

8/02 8/03 8/04 8/05 7103 7/04 7/05 7/06



Sampling at higher
frequency in 2008 (5 day
cycle time versus 10 days in
prior work), shows more
episodic environment. Is
2008 an unusual year?
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Dec 2007 to April 2008 was a fairly extreme period for mesoscale events.
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