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Chlorophyll 
Fluorescence 
Simplified
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only kidding…
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A Biological Property

•Physiology
•Acclimation
•Adaptation

Sensitive to

MIke 
Sieracki
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An Oceanographic Tool

Tommy Dickey
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Fluorescence is measured
to detect and quantify phytoplankton
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Specifically,
fluorescence is 
measured to 
estimate 
chlorophyll 0
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All phytoplankton have chlorophyll a*

Prochlorococcus has divinyl Chl
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…and 
chlorophyll is 
used as a 
measure of 
biomass

Fiedler PC (1982) Zooplankton avoidance and 
reduced grazing responses to Gymnodinium 
splendens (Dinophyceae). Limnology and 

Oceanography 27:961-965
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However, the relationship between 
fluorescence and chlorophyll is variable

Kiefer, Marine Biology, 1973a
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As is the 
relationship 
between 
chlorophyll and 
biomass

Bannister TT, Laws EA (1980) Modeling phytoplankton 
carbon metabolism. In: Falkowski PG (ed) Primary 
Productivity in the Sea. Plenum, New York, p 243-248



John Cullen – Agouron – 2008

Variability of fluorescence can be 
related to environmental conditions, 
species and physiological condition

Loftus ME, Seliger HH (1975) Some 
limitations of the in vivo fluorescence 
technique. Chesapeake Sci. 16:79-92
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Information 
on 
physiological 
status is 
perhaps the 
ultimate 
reward  

Fluorescence Yield

Letelier, R.M., Abbott MR, Karl DM (1996) Chlorophyll natural fluorescence response to 
upwelling events in the Southern Ocean. Geophysical Research Letters 24:409-412
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Fluorescence can yield information 
on species composition
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Flow Cytometry

• Identification
• Physiological properties

www.bigelow.org/cytometry/Examples.html#GB
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Active Fluorescence

• FRRF
• PAM
• FIRe
• Benchtop
• Submersible
• Physiology
• Controversies
• Technical issues

Behrenfeld and Kolber 1999, Science
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…and
the rate of 
photosynthesis

Kolber Z, Falkowski PG (1993) Use of 
active fluorescence to estimate 
phytoplankton photosynthesis in situ. 
Limnology and Oceanography 
38:1646-1665
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Sun Induced Chlorophyll Fluorescence:
The only signal emitted from the ocean and 
detectable from space that can be 
unambiguously ascribed to phytoplankton
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The big goal:
Interpreting natural variability of ϕf as detected 

from space
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What does an oceanographer 
need to know?
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What does an oceanographer 
need to know?

• Principles of measurement
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What does an oceanographer 
need to know?

• Principles of measurement
• Physiological processes
• Environmental influences
• Taxonomic variability

…and interactions among all of these
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Measurement of Fluorescence
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In the beginning…
History: 1966
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Benchtop Fluorometer

• Blue Excitation
• Red emission
• Discrete 

samples
• Flow-through
• Low excitation
• High sensitivity

Turner, Turner Designs (brown), Turner Designs (black)
(watch out for lamp changes)
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Pandora’s Box
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Lorenzen covered the bases

Calibration, linearity, possible interference
Lorenzen 1966
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Early application: 
  Transects of Chlorophyll 

Lorenzen 1966
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Continuous vertical
profiles

Fluorescence
Carl Lorenzen Nutrients, too!

John Strickland
and the 

Food Chain
Research Group

1967 Red Tide Study
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Lorenzen described the 
measurement of blanks
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In situ Fluorometer

• Profilers
• Moorings
• Pulsed
• High sensitivity
• Ambient irradiance influences 

fluorescence yield

Frequency, intensity and spectral quality of 
excitation varies with manufacturer.

Chelsea Instruments

WETLabs
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Now an 
indispensable
tool

Six vertical profiles 
of chlorophyll 
fluorescence (mg m-3) 
and sigma-t (kg m-3) 
from a 13 hr time 
series of 90 
profiles. 

t=0 t=1 hr t=2 hrs

t=5 hrs t=9 hrs t=13 hrs
Tim Cowles, Oregon State University
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…but what do fluorometers measure?
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chlorophyll fluorescence, not chlorophyll

Sieracki
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Physiological effects on fluorescence yield (Fl/
Chl) were recognized early

Kiefer DA (1973) Fluorescence properties of natural phytoplankton assemblages. Marine Biology 22:263-269

NutrientsIrradiance

Loftus ME, Seliger HH (1975) Some limitations of the in vivo fluorescence technique. Chesapeake Sci. 16:79-92
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Natural variability of fluorescence yield was quantified and 
tentatively interpreted: effects of nutrition and irradiance 

Kiefer DA (1973) Fluorescence properties of natural phytoplankton assemblages. Marine Biology 22:263-269

Loftus ME, Seliger HH (1975) Some limitations of the in vivo fluorescence technique. Chesapeake Sci. 16:79-92
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ϕ f =
k f

k f + kp + kH

Variability in the quantum yield of fluorescence: 

ϕ f  (mols photons emitted per mol photons absorbed)

From Yannick Huot

can be expressed in terms of rate constants 
(k, s-1) for the three possible fates of absorbed photons:

FLUORESCENCE, PHOTOSYNTHESIS, HEAT
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ϕ f =
k f

k f + kp + kH

Fluorescence
(Constant)

Variability in the quantum yield of fluorescence: 
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From Yannick Huot
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ϕ f =
k f

k f + kp + kH
Photosynthesis

(Variable)

Fluorescence
(Constant)

Variability in the quantum yield of fluorescence: 

ϕ f  (mols photons emitted per mol photons absorbed)

From Yannick Huot

can be expressed in terms of rate constants 
(k, s-1) for the three possible fates of absorbed photons:
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ϕ f =
k f

k f + kp + kH
Photosynthesis

(Variable)
Heat

(Variable)

Fluorescence
(Constant)

Variability in the quantum yield of fluorescence: 

ϕ f  (mols photons emitted per mol photons absorbed)

From Yannick Huot

can be expressed in terms of rate constants 
(k, s-1) for the three possible fates of absorbed photons:

FLUORESCENCE, PHOTOSYNTHESIS, HEAT
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← INCREASING NUTRIENT STRESS

Nutrient Stress
Leading to Higher Fluorescence Yield

(reduced photochemical quenching)

Kiefer DA (1973)  Marine Biology 22:263-269
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kp  decreases and
ϕ f increases

ϕ f =
k f

k f + kp + kH
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Excess Irradiance Leads to Lower 
Fluorescence Yield 

 (increased nonphotochemical quenching)

…and photosynthetic yield is reduced as well

Kiefer DA (1973)  Marine Biology 22:263-269

kH  increases and
ϕ f  decreases

ϕ f =
k f

k f + kp + kH

Solar Irradiance (old-fashioned units)
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Photosynthetic Efficiency Explored by Measuring 
Change in Fluorescence upon Closure of Reaction 

Centers (e.g., Fv/Fm with DCMU)

Parkhill et al. 2001Samuelsson, G. and G. Öquist (1977). "A method for studying photosynthetic capacities of 
unicellular algae based on in vivo chlorophyll fluorescence." Plant Physiology 40: 315-319.
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The first continuous measurements of Fv / Fm 
employed the Turner Designs

Cullen JJ, Renger EH (1979) Continuous measurement of the DCMU-induced fluorescence response of natural phytoplankton 
populations. Marine Biology 53:13-20.
See also
Roy S, Legendre L (1979) DCMU-enhanced fluorescence as an index of photosynthetic activity in phytoplankton. Marine Biology 
55:93-101
Roy S, Legendre L (1979) Field studies of DCMU-enhanced fluorescence as an index of in situ phytoplankton photosynthetic activity. 
Canadian Journal of Fisheries and Aquatic Sciences 37:1028-1031
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Results were more provocative than conclusive

Cullen JJ, Renger EH (1979) Continuous measurement of the DCMU-induced fluorescence response of natural phytoplankton 
populations. Marine Biology 53:13-20.
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Conclusion (early 80’s):
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Physiological and taxonomic influences on fluorescence yield 
are sources of both errors and useful information.

Conclusion (early 80’s):
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Physiological and taxonomic influences on fluorescence yield 
are sources of both errors and useful information.

We should measure and interpret the variability
of fluorescence yield in nature

Conclusion (early 80’s):
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1980 - 2006: Systematic comparison of yields fell by the 
wayside as other powerful approaches were pursued
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Meantime, sun-induced chlorophyll 
fluorescence was studied on and off

Morel, A., and L. Prieur (1977), Analysis of variations in ocean color, Limnology and 
Oceanography, 22, 709-722. 

Gordon, H. R. (1979), Estimation of the depth of sunlight penetration in natural waters 
for the remote sensing of chlorophyll a via in vivo fluorescence., Applied Optices, 18: 
1883-1884. 
Topliss, B. J., and T. Platt (1986), Passive fluorescence and photosynthesis in the ocean: 
Implications for remote sensing, Deep-Sea Research, 33, 849-864. 
Fisher, J., and U. Kronfeld (1990), Sun-stimulated chlorophyll fluorescence 1: Influence 
of oceanic properties, International Journal of Remote sensing, 11(12), 2125-2147. 
Gower, J. F. R., and G. A. Borstad (1990), Mapping of phytoplankton by solar-stimulated 
fluorescence using an imaging spectrometer, International Journal of Remote sensing, 
11(2), 313-320. 

Kiefer, D. A., W. S. Chamberlin, and C. R. Booth. 1989. Natural fluorescence of 
chlorophyll a: relationship to photosynthesis and chlorophyll concentration in the western 
South Pacific gyre. Limnol. Oceanogr. 34: 868-881. 
Stegmann, P. M., M. R. Lewis, C. O. Davis, and J. J. Cullen (1992), Primary production 
estimates from recordings of solar-stimulated fluorescence in the Equatorial Pacific at 
150˚W, Journal of Geophysical Research, 97(C1), 627-638. 

Babin, M., A. Morel, and B. Gentili (1996), Remote sensing of sea surface sun-induced 
chlorophyll fluorescence: consequences of natural variations in the optical characteristics 
of phytoplankton and the quantum yield of chlorophyll a fluorescence, International 
Journal of Remote Sensing, 17(2), 2417-2448. 

Garcia-Mendoza, E., and H. Maske (1996), The relationship of solar-stimulated natural 
fluorescence and primary productivity in Mexican Pacific waters, Limnology and 
Oceanography, 41(8), 1697-1710. 
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Possibly the only hope for detecting 
relatively low concentration of 
phytoplankton in the presence of CDOM and 

MODIS FLH from Chris Jones

Solar fluorescence-based algorithm

after Huot et al., JGR Oceans (in press)

Doesnʼt work

Works pretty well
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Gayana 68(2) supl. t.I. Proc. : 252-258, 2004 ISSN 0717-652X    http://www.scielo.cl/
SATELLITE FLUORESCENCE AS A MEASURE OF OCEAN SURFACE CHLOROPHYLL
 Jim Gower & Stephanie King 

Fluorescence line height (FLH): A proxy for F 
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Gayana 68(2) supl. t.I. Proc. : 252-258, 2004 ISSN 0717-652X    http://www.scielo.cl/
SATELLITE FLUORESCENCE AS A MEASURE OF OCEAN SURFACE CHLOROPHYLL
 Jim Gower & Stephanie King 

it can sometimes provide reasonable 
estimates of Chlorophyll (especially when 
the range of Chl is very large)

Fluorescence line height (FLH): A proxy for F 
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But fluorescence yield is highly
variable in nature

FL
H
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Huot et al. 2005
L&O Methods
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Apparently huge variability of fluorescence yield in nature 
(ca. 10x) is clearly tied to environmental forcing

Estimated fluorescence quantum
yield: Huot et al. 2005

L&O Methods
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Ricardo Letelier, Mark Abbott, Jasmine Nahorniak
College of Oceanic and Atmospheric Sciences

Oregon State University

Satellites detect fluorescence in full sunlight. In situ 
radiometers can measure F vs E. It also varies greatly!
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This signal should not be ignored!

Estimated fluorescence quantum
yield: Huot et al. 2005

L&O Methods
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A big goal:  Interpreting natural variability of ϕf as detected 
from space

MODIS_Chl         MODIS_FLH           MODIS_CFE            MODIS_ARP

Letelier et al.
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A number of processes must be 
considered to relate FLH quantitatively 
and mechanistically  to the biomass and 
physiology of phytoplankton 

FLH = Luf 683,0−( ) =
                        

                    1
4π

⋅
1
Cf

⋅ϕ f ⋅E
o
(PAR,0− ) ⋅ chl ⋅aϕ

* ⋅Qa
* 683( ) ⋅[Kabs + af 683( )]−1

Recent examples:
Babin et al. (1996)
Ostrawska et al. (1997)
Maritorena and Morel (2000)
Morrison (2003)
Huot et al. (2005)
Laney et al. (2005) 
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1
Cf

⋅ϕ f ⋅E
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* ⋅Qa
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Correction for backscatter 
and Raman scatter

Recent examples:
Babin et al. (1996)
Ostrawska et al. (1997)
Maritorena and Morel (2000)
Morrison (2003)
Huot et al. (2005)
Laney et al. (2005) 
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A number of processes must be 
considered to relate FLH quantitatively 
and mechanistically  to the biomass and 
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⋅
1
Cf

⋅ϕ f ⋅E
o
(PAR,0− ) ⋅ chl ⋅aϕ

* ⋅Qa
* 683( ) ⋅[Kabs + af 683( )]−1

Volume emission to 
upwelling radiance

Recent examples:
Babin et al. (1996)
Ostrawska et al. (1997)
Maritorena and Morel (2000)
Morrison (2003)
Huot et al. (2005)
Laney et al. (2005) 
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Full spectral emission to 
683 nm

Recent examples:
Babin et al. (1996)
Ostrawska et al. (1997)
Maritorena and Morel (2000)
Morrison (2003)
Huot et al. (2005)
Laney et al. (2005) 
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Quantum yield of 
fluorescence —

function of E & physiology

Recent examples:
Babin et al. (1996)
Ostrawska et al. (1997)
Maritorena and Morel (2000)
Morrison (2003)
Huot et al. (2005)
Laney et al. (2005) 
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Incident scalar PAR

Recent examples:
Babin et al. (1996)
Ostrawska et al. (1997)
Maritorena and Morel (2000)
Morrison (2003)
Huot et al. (2005)
Laney et al. (2005) 
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A number of processes must be 
considered to relate FLH quantitatively 
and mechanistically  to the biomass and 
physiology of phytoplankton 

FLH = Luf 683,0−( ) =
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4π

⋅
1
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⋅ϕ f ⋅E
o
(PAR,0− ) ⋅ chl ⋅aϕ
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Recent examples:
Babin et al. (1996)
Ostrawska et al. (1997)
Maritorena and Morel (2000)
Morrison (2003)
Huot et al. (2005)
Laney et al. (2005) 

Chl * irradiance-weighted 
specific absorption 

coefficient
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Internal reabsorption of 
fluoresced photons

Recent examples:
Babin et al. (1996)
Ostrawska et al. (1997)
Maritorena and Morel (2000)
Morrison (2003)
Huot et al. (2005)
Laney et al. (2005) 
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Attenuation of 
downwelling absorbed 

radiation

Recent examples:
Babin et al. (1996)
Ostrawska et al. (1997)
Maritorena and Morel (2000)
Morrison (2003)
Huot et al. (2005)
Laney et al. (2005) 
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Itʼs not really all that bad, and itʼs 
needed to retrieve physiological 
variables

FLH = Luf 683,0−( ) =
                        

                    1
4π

⋅
1
Cf

⋅ϕ f ⋅E
o
(PAR,0− ) ⋅ chl ⋅aϕ

* ⋅Qa
* 683( ) ⋅[Kabs + af 683( )]−1

Correction for backscatter 
and Raman scatter

Attenuation of upwelling 
fluoresced radiation

Attenuation of 
downwelling absorbed 

radiation

Incident scalar PAR

Quantum yield of 
fluorescence —

function of E & physiology

Full spectral emission to 
683 nm

Volume emission to 
upwelling radiance

Internal reabsorption of 
fluoresced photons

Recent examples:
Babin et al. (1996)
Ostrawska et al. (1997)
Maritorena and Morel (2000)
Morrison (2003)
Huot et al. (2005)
Laney et al. (2005) 

Chl * irradiance-weighted 
specific absorption 

coefficient
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These all contribute to the observed nonlinear 
relationships between FLH and Chlorophyll

Huot et al. 2005 model predicted relationship
with constant quantum yield and surface irradiance

Chlorophyll (mg m-3)

FL
H

 (W
 m

-2
 sr

-1
 n

m
-1

)

See Babin et al. 1996; Gower et al. 2004
Roots in papers by Morel and Prieur 1977, Neville and Gower (1977), Gordon (1979)
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Ricardo Letelier, Mark Abbott, Jasmine Nahorniak
COAS, Oregon State University

ϕf 
?

But ϕf  varies — a lot
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…we observed 
the same kind of 
variability in the 
Bering Sea

Data from optical drifters
Schallenberg et al., submitted (JGR Oceans)  
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Goal: Explain this kind of variability in 
fluorescence yield in terms of  ϕf  and the optical 

properties of phytoplankton and the water
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Approach

• Retrieve fluorescence normalized to absorbed 
radiation (Fabs) and surface irradiance, E

• Ascribe variation of Fabs  vs E to natural variability of 
ϕf vs E

• Relate inferred variability of ϕf vs E to phytoplankton 
physiology

• Relate physiological status to environmental factors
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The working hypothesis from the drifter studies was that high 
fluorescence yield corresponds to nutrient stressed assemblages

FLH/Chl vs E slope varied,
reflecting variation in ϕf

ϕf covaried with inferred
upwelling: high nutrient input

- low fluorescence yield

Letelier et al. 1997, GRL
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← INCREASING NUTRIENT STRESS

The underlying model
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Cullen, J.J., Á.M. Ciotti, R.F. Davis and P.J. Neale. 1997. The relationship between near-surface chlorophyll and solar-stimulated 
fluorescence: biological effects. In: Ocean Optics XIII, S.G. Ackleson and R. Frouin, eds. Proc. SPIE 2963: 272-277.

But nonphotochemical quenching was recognized as a factor:
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Non-photochemical
Quenching

Heat dissipation decreases ϕf (supersaturating irradiance)
Photosynthesis decreases ϕf (subsaturating irradiance)

Photochemical
Quenching

But nonphotochemical quenching was recognized as a factor:
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Optical drifter in the 
Bering Sea:

quantum yield is

Moving beyond FLH: 
Direct estimation of quantum yield vs irradiance relationship

Schallenberg et al. 2008, JGR Oceans

Frs
abs =

Lu (683) − Lub (683)( ) ⋅ 4π ⋅Cf

chlrs ⋅aϕ
*(chlrs ) ⋅Qa

*(chlrs )
⋅ Kabs (chlrs ) +κ f (chlrs )⎡⎣ ⎤⎦  

E
  o

(PAR,0– ) [µmol quanta m-2  s-1]

αF
abs

    Fmax
abs  

Frs
abs / E

  o
(PAR,0– )
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Conclusion is the 
same: large 
variation, with high 
fluorescence yield 
associated with 
nutrient stress.

Results from the 
Bering Sea

Schallenberg et al. 2008, JGR Oceans
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Conclusion is the 
same: large 
variation, with high 
fluorescence yield 
associated with 
nutrient stress.

Fv/Fm = 0.41

Fv/Fm 0.60

Stressed

UnstressedBacked up with 
direct measures of 
photosynthetic 
efficiency, Fv/Fm

Results from the 
Bering Sea

Schallenberg et al. 2008, JGR Oceans
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What is the effect of nutrient stress
on F vs E in this system?

Fluorescence Fluorescence Yield
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Analysis after Morrison (2003) L&OSchallenberg et al. 2008, JGR Oceans
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Not much!
(considering only photochemical quenching)

Fluorescence Fluorescence Yield

Analysis after Morrison (2003) L&O
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Big differences in near-surface sun-induced fluorescence yield 
are not due to effects of nutrition on photochemical quenching

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 10 100 1000

Q
ua

nt
um

 Y
ie

ld
 o

f F
lu

or
es

ce
nc

e

Irradiance (µmol quanta m-2 s-1)

Nutrient stressed:
Reduced photochemical 
quenching

Nutrient replete:
Maximal photochemical 
quenching

0

5

10

15

20

25

30

35

0 500 1000 1500
Irradiance (µmol quanta m-2 s-1)

Fa
bs

 (µ
m

ol
 q

ua
nt

a 
m

-2
 s

-1
)

0

5

10

15

20

25

0 50 100 150 200 250 300 350

Stressed Unstressed



John Cullen – Agouron – 2008

Scalar PAR Irradiance (µmol m-2 s-1) 
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Scalar PAR Irradiance (µmol m-2 s-1) 
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A third process must be considered: qi

Photochemical 
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quenching
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of ʻslowʼ

quenching
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associated
with

inhibition
of 

photosynthesis

This quenching leads to reduced photosynthetic efficiency in low light
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Inference: Variability in surface F vs E is dominated
by nonphotochemical quenching (NPQ), not effects of 

nutrition on photochemical quenching

Competition between 
photosynthesis and fluorescence

affects only this curvature

ϕf vs E

F vs E

Schallenberg et al. 2008, JGR Oceans
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An influence of nutrition on NPQ?

F vs E

Schallenberg et al. 2008, JGR Oceans
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Working hypothesis: variability in the quantum yield
of near-surface SICF in the ocean is driven by the
slow component of nonphotochemical quenching, qI.

…the phenomenology of which is 
nearly unknown
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Interpreting this…

…thus requires an understanding of
NPQ vs E = f (physiological state, species)
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A. Barnett (M.Sc. thesis)
see also Laney et al 2005

Careful, quantitative analysis of variable 
fluorescence vs E vs time

Parallel incubations: rapid light curves cause artifacts
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The FIRe Brigade is pursuing robust, quantitative procedures

Analysis of raw data!
Reference standards!

Blanks!
Statistical estimates of errors!

F vs E vs time
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Relating F vs E to P vs 
E during parallel 

incubations
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Not rapid light curves
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And retrieving similar information from vertical profiles
using “any old fluorometer”

Adam Comeau
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Systematic analysis of natural 
variability of φf

high packaging low packaging

Susanne Craig

Large, 
densely 
pigmented 
cells

High φf

Small, weakly 
pigmented 
cells

Low φf
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Fluorescence yield is variable for many reasons

The foundations of studying variations in fluorescence yield go back 50 
years. They should not be ignored.

Sun-induced fluorescence yield varies greatly in nature (about 10x), 
directly driven by physiological processes.

This is not a simple effect of nutrient stress on fluorescence yield.

We don’t know enough about the physiological influences on sun-
induced chlorophyll fluorescence to interpret the variability effectively. 
We can propose explanations, but these would be hypotheses only.

Careful, quantitative analysis — both in the lab and in the field — will 
provide new and powerful interpretations of SICF.

Summary

Thank you!
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