



### Oceanic Microbial Observatory Objectives

- 1. Identify temporal and spatial patterns of dissolved organic carbon and significant bacterioplankton lineages
- 2. Discovery.... High throughput culturing in low nutrient media as a means to bring some of the uncultured bacterioplankton into culture and sequence their genomes
- 3. Connect important microbial plankton groups to the remineralization of specific DOM compounds
- 4. Identify key organisms, proteins and DOM compounds to target for automated, high frequency monitoring

















# Microbial communities in the surface layer at BATS are highly structured in time and space!

Publications from BATS showing vertical and temporal patterns in community structure:

- Gordon et al 1996.
- Field et al. 1997.
- Giovannoni 2000.
- Morris et al. 2004.
- •Giovannoni et al. 1996.
- Wright et al 1997
- Morris et al. 2002
- Morris et al. 2005





| Experiment Inoc. 0.2 Source Sour |      |      | ΔCell<br>Cells E8/l | ∆DOC<br>1 week > month |     |  |  |
|----------------------------------|------|------|---------------------|------------------------|-----|--|--|
| HS 852 (Aug-97)                  | Surf | Surf | 0.75                | -                      | -   |  |  |
|                                  | Deep | Surf | 2.85                | 1.9                    | 3.5 |  |  |
| HS 875 (Aug-98)                  | Surf | Surf | 0.75                | -                      | -   |  |  |
|                                  | Deep | Surf | 2.5                 | 3.1                    | 3.1 |  |  |
| HS 893 (Aug-99)                  | Surf | Surf | 0.5                 | -                      | -   |  |  |
|                                  | Deep | Surf | 2.1                 | 3.7                    | 5.1 |  |  |
|                                  | Deep | Deep | 0.25                | -                      | -   |  |  |
|                                  | Surf | mix  | 0.9                 | -                      | 1.3 |  |  |
| BATS 155 (Aug-01)                | Surf | Surf | 0.5                 | -                      | -   |  |  |
|                                  | Deep | Deep | -                   | -                      | -   |  |  |
|                                  |      |      |                     |                        |     |  |  |













#### **Summary**

- The accumulated Surface water DOC is resistant to rapid microbial degradation by surface consortium
- Mixing deep microbial consortium and nutrients with surface DOC results in DOC drawdown and diagenetic alteration
- Relative increases in T-RFLP fragments of OCS 116, SAR11, SAR202 and Actinobacteria following convective overturn suggest that members of these groups may be important in DOC dynamics











## We constructed an annual composite matrix describing the relative contribution of each ecotype at each depth for each month

| Depth m. | Observed T-RFLP<br>Fragment length (bp) | Putative<br>SAR11<br>Subclade | Mean Relative Contribution for Each Month |         |         |         |         |         |         |         |        |        |         |        |
|----------|-----------------------------------------|-------------------------------|-------------------------------------------|---------|---------|---------|---------|---------|---------|---------|--------|--------|---------|--------|
|          |                                         |                               | Jan                                       | Feb     | Mar     | Apr     | May     | Jun     | Jul     | Aug     | Sep    | Oct    | Nov     | Dec    |
| 0        | 113                                     | la                            | 40 (8)                                    | 38 (5)  | 41 (8)  | 45 (6)  | 55 (5)  | 55 (10) | 64 (10) | 65 (11) | 52 (9) | 44 (9) | 44 (9)  | 36 (4) |
| 40       |                                         |                               | 44 (3)                                    | 36 (4)  | 39 (7)  | 39 (12) | 45 (15) | 47      | 49 (4)  | 53 (10) | 48 (5) | 44     | 41 (7)  | 42     |
| 80       |                                         |                               | 45 (12)                                   | 35 (7)  | 39 (11) | 42 (12) | 43 (10) | 43 (10) | 40 (10) | 37 (4)  | 41     | 38     | 35 (2)  | 40     |
| 120      |                                         |                               | 17 (11)                                   | 34 (11) | 31 (9)  | 34      | 36 (14) | 38 (11) | 37 (12) | 37 (9)  | 42 (3) | 34     | 27 (9)  | 22     |
| 160      |                                         |                               | 13 (2)                                    | 20 (6)  | 32 (10) | 28      | 24 (7)  | 20 (13) | 25 (17) | 20 (7)  | 27 (3) | 24     | 21 (10) | 17     |
| 200      |                                         |                               | 14 (9)                                    | 15 (3)  | 17 (9)  | 17 (3)  | 14 (9)  | 16 (10) | 14 (10) | 13 (5)  | 17 (3) | 17 (9) | 10 (4)  | 13 (4) |
| 250      |                                         |                               | 4 (5)                                     | 10 (1)  | 19 (15) | 16 (11) | 16 (6)  | 17 (6)  | 17 (6)  | 17 (7)  | 13 (5) | 12     | 10 (1)  | 7      |
| 300      |                                         |                               | 20 (17)                                   | 8 (1)   | 13 (7)  | 15      | 16 (8)  | 18 (6)  | 17 (4)  | 16 (3)  | 15 (8) | 13     | 11 (5)  | 16     |



#### Summary

- $\cdot$  DOC dynamics is of significant importance to the oceanic C -cycle
- Understanding how microbes are linked to these dynamics is still in a primitive phase
- •Bulk DOC dynamics at BATS have been resolved and there are apparent relationships between temporal and spatial patterns of specific microbial populations
- BIG UNANSWERED QUESTION: How do specific microbes interact with specific compounds?

