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INTRODUCTION

Over 20 yr ago, Antia et al. (1980) wrote: ‘we urge
oceanographers and marine biologists to stop ignoring
the role of dissolved organic nitrogen (DON) in primary
production’. Since then, many studies have examined
various aspects of DON, both in marine and freshwa-
ters. As a result, the DON pool is increasingly recog-
nized as a dynamic component of the nitrogen (N) and
carbon (C) cycles of marine and aquatic systems. 

Historically, DON was believed to be composed
mainly of refractory compounds resistant to biological
degradation and generally unavailable as sources of N
nutrition for phytoplankton or bacteria. Nevertheless,
there were several early reports of relatively rapid

turnover and high flux rates of total DON pools.
Turnover times for total DON and for ‘labile’ DON in
the coastal waters of Southern California were esti-
mated as 21 and 17 d respectively; these rates were 13
to 14 times more rapid than DON turnover times in the
Central North Pacific Gyre (Jackson & Williams 1985).
In Castle Lake, Zehr et al. (1988) reported fast rates of
increase in the DON pool in early summer (0.31 µM N
d–1). In the photic layer of Lake Kizaki, Japan, Taka-
hashi & Saijo (1981) measured daily decomposition
rates of DON to be 8.6%, implying a DON pool
turnover of about 12 d (Takahashi 2001). Twenty years
later, Haga et al. (2001) determined DON residence
times in Lake Kizaki ranging from 1.4 to 21 d during
May through December, when DON concentrations
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ranged from 3.5 to 10.4 µM N. Such observations are
not consistent with the perception of a DON pool
composed entirely of recalcitrant compounds. 

Subsequent to the comprehensive and detailed re-
view of Antia et al. (1991), some salient new features of
N flux into and out of DON pools have become evident.
These imply that many DON compounds are cycled
more rapidly in aquatic environments than previously
recognized. We now know that DON may be released
from actively growing phytoplankton, sometimes in ap-
preciable quantities (Bronk et al. 1994, Bronk & Ward
1999, Diaz & Raimbault 2000), possibly via viral lysis or
autolysis of bacteria (Fuhrman 1999) and algae (Gobler
et al. 1997, Agusti et al. 1998), that elevated concentra-
tions of DON are common in blooms of Trichodesmium,
the primary N2 fixer in the ocean (Capone et al. 1994,
Glibert & Bronk 1994, Vidal et al. 1999), and that
atmospheric inputs of DON to the oceans can be sub-
stantial (Cornell et al. 1995, Scudlark et al. 1998). 

Sinks for DON have also been studied in more detail
over the last decade. Algae (Lewitus et al. 2000),
cyanobacteria (Berman 2001), bacteria (Antia et al.
1991, Bronk 2002), archaebacteria (Ouverney &

Fuhrman 2000) and perhaps even pro-
tists (Tranvik et al. 1993) have been
shown to exploit various components
of the DON pool either directly or after
bacterial degradation. The potential of
photochemical modification or degra-
dation of DON constituents has also
been recognized (Bushaw et al. 1996,
Moran & Zepp 2000, Morell & Corre-
dor 2001).

The capacity of some algal species
to exploit DON compounds as sources
of N has led to the idea that specific
DON components can exert selective
pressure on the composition of the
phytoplankton community (Paerl
1997, Seitzinger & Sanders 1997,
Berman & Chava 1999). For example,
inputs of DON from rivers heavily
impacted by human activity may stim-
ulate eutrophication processes and the
proliferation of toxic phytoplankton in
estuarine and coastal waters (Granéli
et al. 1985, Berg et al. 2001). 

In this paper we present an over-
view of the present state of knowledge
of DON in both freshwater and marine
environments, focusing mainly on in-
formation gathered since the exten-
sive review on this topic by Antia et al.
(1991). Recently, a comprehensive re-
view focusing on DON dynamics in

marine systems, though not freshwater environments,
was published by Bronk (2002).

CONSTITUENTS OF THE DON POOL

A considerable proportion of the total N (TN) pool
(excluding dissolved gaseous N2) in many freshwater,
marine, coastal, and estuarine environments is fre-
quently associated with the DON fraction. Indeed, in
many natural waters, concentrations of DON are much
higher than those of the total dissolved inorganic nitro-
gen (DIN) fraction, consisting of ammonium (NH4

+),
nitrate (NO3

–), and nitrite (NO2
–). ‘Average’ composi-

tion for seawater total dissolved N (TDN) pools is
shown in Fig. 1. In the deep ocean, however, DON is a
small percentage of TDN.

In freshwaters, the DON fraction often exceeds 50%
of the TDN pool and is usually 5 to 10 times higher in
concentration than the particulate organic nitrogen
(PON) within plankton and seston (Krupka 1989,
Wetzel 2001). An example of seasonal data from Lake
Kinneret is shown in Fig. 2 (T. Berman & A. Nishri
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Fig. 1. Average composition of nitrogen pools (except dissolved N2) in open
ocean surface water, open ocean deep water, coastal and estuarine waters
(modified from Antia et al. 1991). DON: dissolved organic nitrogen; PON: 

particulate organic nitrogen
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unpubl. data). The DON:PON ratio tends to decrease
as lakes become more eutrophic (Wetzel 2001). A
detailed summary of the ranges of DON concentrations
in marine waters, their global and vertical distribution,
seasonal variation and relationships between DON
and DIN is given in Bronk (2002). A condensed version
of these data is reproduced in Table 1 together with
additional data from freshwater environments. The
reader is also directed to Tables 2 & 3 in Antia et al.
(1991) for details of low molecular weight (LMW) DON
compounds, sample locations, and concentrations as
reported in the literature prior to 1990.

Much of the DON pool still remains uncharacterized
chemically. Operationally, components of the DON
pool have been divided into high molecular weight
(HMW, usually >1 kDa) and LMW compounds. HMW
DON includes proteins (such as enzymes, modified
bacterial wall proteins, dissolved combined amino
acids [DCAA]), nucleic acids (DNA, RNA) and humic-
like substances that have a relatively low N content.
There is the added complication that some LMW and
HMW DON compounds may be loosely held or
adsorbed to humic substances. 

Within the last decade the application of ultra-filtra-
tion techniques has expanded our knowledge of the
HMW DON fraction and added the acronym UDON
(ultra-filtered DON) to the literature. Marine HMW
DON (i.e. the >1 kDa fraction) has a characteristic
chemical composition that is highly conserved across
oceanic regions (McCarthy et al. 1997, 1998). Recent
studies of this fraction suggest that much of the
refractory DON in the oceans probably consists of
amide groups in peptidoglycan remnants enriched
with D-enantiomers of alanine, asparagine, glutamic
acid, and serine (McCarthy et al. 1996, 1997, 1998,
Dittmar et al. 2001, Ogawa et al. 2001). Most of this
DON appears to be derived from bacterial cell wall
material that has undergone modification of its molec-
ular structure, making it resistant to further degrada-
tion. Similar material was present in coastal sediments
(Pedersen et al. 2001). To the best of our knowledge, no
comparable studies have yet been made in freshwater. 

A host of organic nitrogen (ON) compounds make up
the LMW DON pool, including urea, peptides (part of the
DCAA pool), dissolved free amino acids (DFAA), amino
sugars, purines, pyrimidines, pteridines, amides,
methyl amides and others (Antia et al. 1991). Many of
these compounds may be important N substrates for au-
totrophs and heterotrophs (Bronk 2002).

ANALYTICAL METHODS FOR DON
DETERMINATION

A major challenge in the study of DON is the lack of
sensitive and precise techniques to quantify total DON
concentrations, and those of various known DON con-
stituents. Presently all methods to measure total DON
concentrations depend on determining the TDN con-
centration and then subtracting the separately mea-
sured concentrations of DIN (i.e. the sum of NH4

+, NO3
–

and NO2
– concentrations). This approach combines the

analytical errors of 3 analyses: TDN, NH4
+ and (NO3

– +
NO2

–). 
Three basic methods are currently used to obtain the

complete oxidation of all the organic constituents of
TDN: (1) Variations of the ‘wet chemical’ method
based on persulphate digestion and oxidation to NO3

–

(Menzel & Vaccaro 1964, Sharp 1973, Nydahl 1978,
Valderrama 1981, Bronk et al. 2000). Some earlier
studies on freshwater used Kjeldahl digestion with
SeO3 as the catalyst to determine TDN (Mitamura &
Saijo 1981). (2) Ultraviolet oxidation to NO3

– (Arm-
strong et al. 1966, Armstrong & Tibbitts 1968, Bronk et
al. 2000). (3) High temperature oxidation to NO gas
and detection by spectrophotometry (Sharp 1973,
Suzuki & Sugimura 1985), or chemiluminescence
(Walsh 1989, Hansell et al. 1993).
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Fig. 2. The distributions of N fractions in the euphotic zone of
a monomictic, meso-eutrophic lake (Lake Kinneret). Values
are averaged from 1975 through 1994 for a homothermic
period, late winter (March), and a stratified period (Septem-
ber; unpubl. data from Kinneret Laboratory database). DON:
dissolved organic nitrogen; PON: particulate organic nitrogen
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Location Depth TDN DON Method Source
(m) (µM N) (µM N)

Oceanic-surface 
Greenland Sea <100 4.6 ± 0.6 PO Hubberten et al. (1995)
Bering Sea, North Pacific <30 8.6 ± 2.9 2.5 ± 1.9 HTO Hansell (1993)
Western tropical Pacific (10–20° S) <50 a5.4 ± 0.3a UV Hansell & Feely (2000)
Western tropical Pacific (25–35° S) <50 a4.8 ± 0.4a UV Hansell & Feely (2000)
Santa Monica Basin, Pacific <100 11.9 ± 6.2 5.2 ± 1.9 HTO Hansell et al. (1993)
Eastern N. Pacific <85 11.1 ± 6.4 4.1 ± 0.5 PO Loh & Bauer (2000)
Subtropical Pacific (5–21° N) <50 5.8 ± 1.4 a5.5 ± 0.9a UV Hansell & Waterhouse (1997)
Equatorial Pacific (6°S–2° N) <50 16.0 ± 6.1 a5.0 ± 0.7a UV Hansell & Waterhouse (1997)
Equatorial Pacific <40 13.9 ± 4.0 a,b8.4 ± 1.0a,b PO Libby & Wheeler (1997)
Equatorial Pacific (6–15° S) <100 7.9 ± 3.5 a5.5 ± 0.7a UV Hansell & Waterhouse (1997)
Subtropical Pacific (16–35° S) <150 4.8 ± 0.4 a4.5 ± 0.4a UV Hansell & Waterhouse (1997)
Subpolar Pacific (35–64° S) <150 18.3 ± 6.8 a4.3 ± 0.6a UV Hansell & Waterhouse (1997)
Pacific Equatorial Transition <50 5.8–6.0 a5.7–5.9a UV Abell et al. (2000)
Pacific Subtropical Gyre <50 5.3–6.3 a5.2–6.2a UV Abell et al. (2000)
Pacific Subtropical Transition <50 4.7–5.5 a4.5–5.3a UV Abell et al. (2000)
Equatorial Pacific (16° S–1° N) <200 ~3.0–7.0~ PO Raimbault et al. (1999)
Southern California Bight (offshore) <55 9.7 ± 2.4 7.0 ± 0.4 UV Ward & Bronk (2001)
Southern California Bight (offshore) <43 10.8 ± 5.8 6.6 ± 1.4 UV Ward & Bronk (2001)
Southern Ocean Polar Front <200 6.9–11.0 HTO Kähler et al. (1997) 
North of Antarctic Peninsula Surface 0.8–6.3 UV Karl et al. (1996)
Pacific Subarctic Frontal <50 5.3–7.9 a5.1–5.2a UV Abell et al. (2000)
Southern Ocean <150 31.2 ± 3.1 4.6 ± 1.5 HTO Ogawa et al. (1999)
Southern Ocean (Stn F) <94 20.9 ±1.1 4.2 ± 0.2 PO Loh & Bauer (2000)
Ross Sea Polynya <150 2.1–6.3 UV Carlson et al. (2000)
Antarctic waters <100 3.9 ± 1.3 PO Hubberten et al. (1995)
Drake Passage (61–50° S) <50 3.1–7.3 UV Sanders & Jickells (2000)
North Atlantic (33–60° N) Surface 4.4–7.4 HTO Kähler & Koeve (2001)
Arctic Ocean (shelf) a<55c 3.6 ± 0.7 PO Wheeler et al. (1997)
Arctic Ocean (slope) a<100c 5.2 ± 1.6 PO Wheeler et al. (1997)
Arctic Ocean (basin) a<100c 5.3 ± 1.4 PO Wheeler et al. (1997)
Sargasso Sea Surface a,b5.8 ± 0.8a,b UV Bates & Hansell (1999)
Sargasso Sea (BATS) Surface 4.0–5.5 UV Hansell & Carlson (2001)
Equatorial Atlantic <100 8.2 ± 4.8 PO Vidal et al. (1999)
Pacific (HMW DON >1 kDa)d <100 1.2 ± 0.2 UV Benner et al. (1997)
Atlantic (HMW DON >1 kDa)d Surface 1.0 UV Benner et al. (1997)
Gulf of Mexico (HMW DON >1 kDa)d 10 1.2 UV Benner et al. (1997)
Sargasso Sea Surface a,b5.8 ± 0.8a,b UV Bates & Hansell (1999)
Sargasso Sea (BATS) Surface 4.0–5.5 UV Hansell & Carlson (2001)
Equatorial Atlantic <100 8.2 ± 4.8 PO Vidal et al. (1999)

Oceanic-deep
NE Pacific >150 a4.82e 4.5 ± 0.4 UV Harrison et al. (1992)
Greenland Sea >100 3.5 ± 0.8 PO Hubberten et al. (1995)
Santa Monica Basin 110–800 36.7 ± 5.7 4.3 ± 1.2 HTO Hansell et al. (1993)
Subtropical Pacific (5–21° N) 51–1000 36.9 ± 5.7 a2.7 ± 0.7a UV Hansell & Waterhouse (1997)
Equatorial Pacific (6° S–2° N) 51–1000 38.8 ± 4.1 a2.6 ± 0.6a UV Hansell & Waterhouse (1997)
Equatorial Pacific (6–15° S) 101–3000 37.1 ± 7.1 a2.9 ± 0.8a UV Hansell & Waterhouse (1997)
Subtropical Pacific (16–35° S) 151–3000 28.3 ± 12.2 a3.0 ± 0.6a UV Hansell & Waterhouse (1997)
Subpolar Pacific (35–64° S) 151–3250 31.2 ± 4.7 a2.8 ± 0.6a UV Hansell & Waterhouse (1997)
Pacific Equatorial Transition ~205 2.8 UV Abell et al. (2000)
Pacific Subtropical Gyre ~305 2.8–3.7 UV Abell et al. (2000)
Pacific Subtropical Transition ~185 4.4 UV Abell et al. (2000)
Pacific Subarctic Frontal ~145 3.7 UV Abell et al. (2000)
Eastern N. Pacific 100–4097 39.0 ± 5.2 2.4 ± 0.4 PO Loh & Bauer (2000)
Southern Ocean Polar Front 200–1500 7.9–9.8 HTO Kähler et al. (1997) 
Southern Ocean ~100–4150 36.1 ± 2.0 3.9 ± 1.1 HTO Ogawa et al. (1999)
Southern Ocean (Stn F) 142–5408 32.2 ± 5.4 3.5 ± 0.6 PO Loh & Bauer (2000)
Ross Sea Polynya 150–600 2.4 ± 0.3 UV Carlson et al. (2000)

Table 1. Concentrations of total dissolved nitrogen (TDN) and dissolved organic nitrogen (DON) in ocean, coastal, estuarine,
riverine, and freshwater systems. Measurement methods were variations of persulfate oxidation (PO), high-temperature oxida-

tion (HTO) or ultraviolet oxidation (UV). HMW: high molecular weight
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Location Depth TDN DON Method Source
(m) (µM N) (µM N)

Oceanic-deep (continued)
Antarctic waters >100 3.0 ± 1.1 PO Hubberten et al. (1995)
Sargasso Sea (BATS) 250–1000 2.1–5.0 UV Hansell & Carlson (2001)
Sargasso Sea (BATS) 1000–4000 3.1 ± 0.4 UV Hansell & Carlson (2001)
Drake Passage (61–50° S) >50 1.4–2.9 UV Sanders & Jickells (2000)
Equatorial Atlantic 110–1000 6.7 ± 4.1 PO Vidal et al. (1999)
HMW DON >1 kDad 200–2400 0.5–0.56 UV Benner et al. (1997)

Coastal/Continental shelf
Gulf of Mexico (Los Angeles–Texas coast) Surface 1.9–52.5 HTO López-Veneroni & Cifuentes (1994)
Gulf of Riga, Baltic Sea Surface a26.7–29.4f 18.0–26.4 PO Tamminen & Seppällä (1999)
Gulf of Riga, Baltic Sea 2.5 – 30 15.5–40.2 a5.4–23.0g HTO Jørgensen et al. (1999)
Georges Bank Surface 4.8–5.4 UV Hopkinson et al. (1997)
Georges Bank 200–1500 2.5–3.4 UV Hopkinson et al. (1997)
Middle Atlantic Bight Surface a,b7.4 ± 1.1a,b UV Bates & Hansell (1999)
Monterey Bay <100 18.5 ± 6.1a 1.9 ± 1.6 HTO Hansell (1993)
Bering Sea, North Pacific <30 8.6 ± 2.9 2.5 ± 1.9 HTO Hansell (1993)
Monterey Bay <20 6.5 ± 1.9 5.2 ± 1.8 PO Bronk & Ward (1999)
Northeast Greenland Shelf <70 7.2 a5.9h PO Daly et al. (1999)
Akkeshi Bay, Japan Surface 7.7 ± 2.3 6.7 ± 1.0 PO Hasagawa et al. (2000a)
Japanese bays (2) Surface 12.0 ± 1.6a 8.7 ± 1.6 HTO Tupas & Koike (1990)
Southern California Bight (nearshore) <55 10.2 ± 2.5a 7.7 ± 1.3 UV Ward & Bronk (2001)

Estuarine
Shinnecock Bay, New York Surface 2.0–4.9 a0.6–4.3i PO Berg et al. (1997), Lomas et al. (1996)
Waquoit Bay, Massachusetts Surface 140 40.0 NG Hopkinson et al. (1998)
Chesapeake Bay, mesohaline Surface 34.1 ± 12.3 21.3 ± 16.0 PO Bronk et al. (1998)
Chesapeake Bay, mesohaline Surface 42.5 ± 3.7a, 22.3 ± 9.2 PO Bronk & Glibert (1993a)
Chesapeake Bay, mesohaline Surface 23.1 ± 1.7a, 22.2 ± 1.6 PO Bronk & Glibert (1993a)
Chesapeake Bay, mouth Surface 16.3 ± 5. 5b UV Bates & Hansell (1999)
Apalachicola Bay Surface 23 14.8 ± 1.0 PO Mortazavi et al. (2000)
Delaware Estuary Surface 40.8 ± 29.3 PO Karl (1993)
Elbe Estuary Surface 72.2 ± 17.6 65.0 ± 12.2 PO Kerner & Spitzy (2001)
North Inlet, South Carolina Surface 19.4–35.3 18.0–30.8 NG Lewitus et al. (2000)
Tomales Bay Surface 5.8–12.6 UV Smith et al. (1991)

Rivers 
Russian rivers draining into Arctic (7) Surface                27.0 ± 5.0 NG Gordeev et al. (1996), Wheeler et al. (1997)
Rivers entering the Baltic Sea (5) Surface 48.9 ± 41.9 29.8 ± 14.8 HTO Stepanauskas et al. (2002)
Susquehanna River, Maryland Surface 116 23.0 NG Hopkinson et al. (1998)
Satilla River, Georgia Surface 62.6 59.0 NG Hopkinson et al. (1998)
Parker River, Maryland Surface 37 26.0 NG Hopkinson et al. (1998)
Delaware River Surface 29.7 ± 23.7 HTO Seitzinger & Sanders (1997)
Hudson River Surface 33.5 HTO Seitzinger & Sanders (1997)
Rivers in USA and Europe (17) Surface NG Seitzinger & Sanders (1997)
Choptank River Surface 41.3 26.9 PO Bronk & Glibert (1993a)
Georgia and South Carolina Rivers (8)j Surface 35.9 ± 10.7 NG Alberts & Takács (1999)
Streams in Sweden (2)k Surface 24.3 ± 7.4 HTO Stepanauskas et al. (2000)
Wetland in Sweden (bulk DON)l Surface 90.0 ± 68.0 PO Stepanauskas et al. (1999b)
Lagunitas Creek (flows to Tomales Bay) Surface 3.9–17.9 UV Smith et al. (1991)

Lakes
Mendota, USA 0 m 42.3 44.7 NG Wetzel (2001)
Mendota, USA 20 m 44.2 NG Wetzel (2001)
Fureso, Denmark 31.4–45.7 NG Wetzel (2001)
Ysel, Netherlands 42.1–131.4 NG Wetzel (2001)
Constance, Germany 3.6–10.7 NG Wetzel (2001)
Lucerne, Switzerland 5.7–12.9 NG Wetzel (2001)
Rotsee, Switzerland 19.2–47.1 NG Wetzel (2001)
Wintergreen, USA 35.7–94.3 NG Wetzel (2001)
Lawrence, USA 5.7–17.1 NG Wetzel (2001)
Kizaki, Japan 15.9–24.0 4.8–12.5 PO Takahashi & Saijo (1981)
Biwa, Japan N Basin 7.0–8.0 4.0–7.2 PO Mitamura & Matsumoto (1981)

Table 1 (continued)

(Table continued on next page)



Aquat Microb Ecol 31: 279–305, 2003

The need to improve techniques for measuring DON
has long been recognized. To this end, a working
group was convened in 1993 to decide how best to pro-
ceed and to offer recommendations to the oceano-
graphic community (Hopkinson et al. 1993). Other
comparisons of DON methodology were subsequently
published (Walsh 1989, Williams 1993, Bronk et al.
2000). A recent cross-laboratory exercise with 29 sets
of analyses comparing these methods on 5 marine sam-
ples gave a coefficient of variation ranging from 19 to
46%, with the poorest replication of samples from
deep ocean waters (Sharp et al. 2002). All the methods
gave similar levels of sensitivity and precision. We con-
clude that present methods are reasonably compatible
but that new or improved techniques for determining
concentrations of DON with better sensitivity and pre-
cision are still needed.

SOURCES OF DON

DON may come from both allochthonous and
autochthonous sources. The former includes terrestrial
runoff, leaching from plant detritus and soils into
streams and rivers, sediments, and atmospheric depo-
sition. Autochthonous sources may include release by
exudation from phytoplankton, macrophytes and bac-
teria, from cell death or viral lysis, or from micro- and
macrozooplankton grazing and excretion (Fig. 3).

In the case of streams, rivers, lakes and freshwater
reservoirs, much of the DON is often derived from

terrestrial leaching and runoff, and consists mainly of
humic substances. Significant inputs of DON to shallow
freshwaters and wetlands may be derived from active or
passive release from submerged macrophytes (Crowder
& Painter 1991) and benthic algae (Jansson 1979).
Clearly the composition of DON exported by rivers into
lakes, estuaries and coastal waters may be radically
different depending on the nature of the catchment
areas being drained. In many freshwater systems,
anthropogenic sources are responsible for significant in-
puts of DON that is transported downstream to estuarine
and coastal waters (Seitzinger & Sanders 1997, 1999).

A study by Perakis & Hedin (2002) found that 70% of
the TDN in streams and rivers of temperate South
American forest regions that were pristine and free of
human intervention consisted of DON. In contrast,
DON comprised only 2% of the TDN in the running
water of a forested area in NE USA. This dramatic
difference was attributed to the impact of human
activities that have doubled N input into the global
terrestrial cycle within the last century. The conse-
quences have been an atmosphere polluted with NH4

+

and N oxides in heavily industrialized areas, increased
atmospheric N deposition, acidified soils, streams and
lakes, decreased biodiversity and impacted coastal
ecosystems and fisheries (van Breemen 2002). Para-
doxically, despite the low percentage of DON in the
TDN of NE USA forest streams measured by Perakis &
Hedin (2002), we note that Alberts & Takács (1999)
estimated that DON accounts for 40 to 90% of the TDN
in rivers of the SE USA. 
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Location Depth TDN DON Method Source
(m) (µM N) (µM N)

Lakes (continued)
Biwa, Japan S Basin 7.0–15.0 5.4–8.6 PO Mitamura & Matsumoto (1981)
Okeechobee, USA 67.6 41.2–63.1 PO Gu et al. (1997)
Plüssee, Germany 0–15 51–104 47.1 PO Münster & Albrecht (1994)
Plüssee, Germany 20–25 12–259 88.5–187.8 PO Münster & Albrecht (1994)
Kinneret, Israel—winter 0–15 47.9 26.1 PO Present study
Kinneret, Israel—spring 0–15 25.6 22.7 PO Present study

aData presented are total organic nitrogen (TON)
bTON includes ammonium
cData were converted from g m–2; mean and SD at stations within each area are reported
dSamples from the Pacific, Atlantic, and Gulf of Mexico
eEstimated from integrated values throughout the upper 150 m
f Sum of the average DON, nitrate and ammonium concentrations
gJørgensen et al. (1999) listed urea separately; it was added back into the DON pool
hMedian values
i Measured during a bloom of Aureococcus anophagefferens
j Averages for 8 rivers (Altamaha, Black, Edsto, Ogeechee-Eden, Ogeechee-Oliver, Peedee, Satilla, Savannah, and St. Mary’s)
kThe 2 streams were Lillån and Stridbäcken
l The 3 wetlands were Amboke, Isgrannatorp, and Vomb

Table 1 (continued)
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The quantities and characteristics of DON in estuar-
ine and marine coastal waters depend on riverine
inputs. In coastal zones, terrestrial run-off is also an
important factor and the amounts and availability of
DON vary depending on the source. Approximately
25% of DON from 2 pastures and 20% of DON from a
mixed hardwood forest in summer were utilized by
freshwater bacteria in short-term bioassays (Wiegner
& Seitzinger 2001). Seitzinger et al. (2002) found that
storm water runoff from urban/suburban areas had a
higher proportion of bioavailable DON (59 ± 11%)
than that from agricultural pastureland (30 ± 14%) and
forests (23 ± 19%). Only 8 to 15% of the bulk DON in a
relatively pristine wetland in Sweden was potentially
bioavailable to estuarine bacteria (Stepanauskas et al.
1999a,b). 

In shallow freshwater, estuarine and coastal systems,
sediments can be an important source of DON to the
overlying water column (reviewed in Burdige & Zheng

1998). Sediment release was the major source of DON
in meso-oligotrophic Castle Lake, California (Zehr et
al. 1988) and in shallow Danish coastal waters.
Lomstein et al. (1998) estimated that efflux of DON
from sediment was about twice that of DIN. In another
study of sediment-water C and N fluxes at Limfjord,
Denmark, Middleboe et al. (1998) also found DON
(urea, DFAA and DCAA) to be the dominant N form
released from the sediments. These authors suggested
that in many cases the estimates of DON flux were
underestimated because rapid bacterial uptake of
DON in the overlying water was not taken into
account.

Although the importance of atmospheric DON inputs
has now become evident both for freshwater and
marine systems, few data are available to evaluate
these inputs (Shaw et al. 1989, Cornell et al. 1995,
2001, Russell et al. 1998, Scudlark et al. 1998). Cornell
et al. (1995) proposed that the atmospheric input of
fixed N to the ocean is about twice that of previous esti-
mates. At continental sites in North America, between
20 and 75% of the DON in atmospheric deposition has
been reported to be bioavailable (Timperley et al.
1985, Peierls & Paerl 1997, Seitzinger & Sanders 1999),
with urea as an important constituent. However, we
note that the quantitative importance of urea in atmo-
spheric deposition is under debate (Cornell et al. 1998).
DON from rainwater stimulated growth of marine
phytoplankton (Peierls & Paerl 1997) and of axenic
cultures of freshwater algae (Timperley et al. 1985).
One study in the NE USA demonstrated that a large
percentage (45 to 75%) of the DON in rainwater was
biologically available and stimulated the productivity
of coastal marine bacteria and phytoplankton
(Seitzinger & Sanders 1999).

Excretion by waterfowl is an additional exogenous
source of DON that may be quite significant in some
shallow and small freshwater environments (Manny et
al. 1994). This is unlikely, however, to be of much
importance in the pelagic ocean!

In the open ocean, autochthonous sources of DON
dominate, especially for the more labile constituents of
the pool. As noted previously, DON is excreted by liv-
ing algae (e.g. Bronk & Ward 1999, Nagao & Miyazaki
2002) although the actual amounts of DON released
are still controversial (Slawyk & Raimbault 1995, Pujo-
Pay et al. 1997, Flynn & Berry 1999, Nagao & Miyazaki
1999, Bronk & Ward 2000, Slawyk et al. 2000). DON is
also released when algae lyse, due to viral infection
(Bratbak et al. 1998) or by natural cell death (apopto-
sis), when grazers feed ‘sloppily’ (Dagg 1974, Jumars
et al. 1989), or during zooplankton excretion (Lampert
1978, Riemann et al. 1986, Wiltshire & Lampert 1999,
Rosenstock & Simon 2001). Protists may release DON
compounds as a result of feeding on bacteria, pico-
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Fig. 3. Sources and sinks of dissolved organic nitrogen (DON)
in aquatic systems. DPA stands for dissolved primary amines. 

Modified from Bronk (2002)
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plankton or possibly when eaten (Antia et al. 1980,
Berman et al. 1987, Hasagawa et al. 2000a,b, 2001,
Nagata 2000). Zooplankton and higher trophic level
animals may also contribute to DON. For example, in
the sea, as contrasted to fresh water, the excretions of
animals such as cetaceans, tunicates, teleost and carti-
laginous fish may also add to the DON pool. The
hydrolytic activity of bacteria and protists associated
with macro- and micro-aggregates (Smith et al. 1992,
Hoppe et al. 1993, Grossart & Simon 1998) and trans-
parent proteinaceous particles (Long & Azam 1996,
Berman & Viner-Mozzini 2001) that are numerous in
both marine and freshwater environments may also
release DON. Organic N contained within small bacte-
ria and viruses that pass through the 0.45 or 0.2 µm
pore-size filters generally used to obtain the ‘dissolved’
water fraction is likely an insignificant fraction of the
total DON measured in most routine determinations. 

SINKS FOR DON

The 4 main sinks for DON are bacterial uptake,
phytoplankton uptake, photochemical decomposition
and abiotic adsorption (Fig. 3). 

Degradation as a result of bacterial activity probably
accounts for the major flux of N out of the DON pool in
most aquatic systems. Obviously some ON compounds
are more labile than others. Many of the intermediate
compounds formed (e.g. amino acids from hydrolysis
of proteins and peptides, urea from purine breakdown)
are taken up and utilized directly by bacteria and
phytoplankton. Further breakdown will generate
NH4

+, which is either assimilated directly by the micro-
biota or nitrified to NO3

–. Berman et al. (1999) showed
that NH4

+ and urea were released from indigenous
DON compounds in unamended, 1.0 µm filtered
marine and freshwaters within several days, presum-
ably as the result of bacterial metabolism. 

The ability of some algal species to utilize DON
sources such as amino acids and urea has long been
known (Pintner & Provasoli 1963, North & Stephens
1967, Wheeler et al. 1973, Antia et al. 1975, Neilson &
Larsson 1980). Most of these studies, however, used
axenic batch cultures growing on high initial concen-
trations of ON substrates, thus the ability of organisms
to exploit the much lower concentrations of these com-
pounds encountered in the environment in situ is
unclear. Nevertheless, it seems reasonable that the uti-
lization of DON by different populations of bacteria
and phytoplankton can vary considerably. Berman &
Chava (1999) observed that different assemblages of
dominant phytoplankton developed when they incu-
bated Lake Kinneret water with various added ON
sources. These authors suggested that the kind of ON

substrates available in any given environment could
influence the species composition of the phytoplank-
ton. Seitzinger & Sanders (1999) also noted that the
community composition of phytoplankton differed in
growth experiments with estuarine water enriched
with rainwater DON (diatoms and or dinoflagellates
dominant) or with NH4

+ (small monads dominant).
There is also some evidence that inputs of DON to
estuarine and coastal waters stimulated the develop-
ment of brown tide blooms of Aureococcus anophagef-
ferens (Gobler & Sañudo-Wilhelmy 2001, Gobler et al.
2002). Axenic cultures of A. anophagefferens were
able to hydrolyze a variety of DON compounds (pep-
tides, chitobiose, acetamide and urea) indicating the
ability of this organism to exploit these substrates
(Berg et al. 2002).

It now appears that in many situations DON can be
an important source of phytoplankton N nutrition in
the natural environment. For example, Benner et al.
(1997) estimated that 30 to 50% of daily phytoplankton
N demand in the equatorial North Pacific could be
supplied by remineralization of the DON pool. Brown
tides off Long Island usually occur in drought years
when NO3

– inputs are reduced and DON concentra-
tions are high relative to DIN (LaRoche et al. 1997).
DON was found to be the major source of N for phyto-
plankton in the Gulf of Riga, Baltic Sea, and may be an
important contributing factor to the eutrophication of
these waters (Berg et al. 2001). Townsend & Thomas
(2002) present data suggesting that DON provides
some of the N requirement at the start of the winter-
spring phytoplankton bloom on Georges Bank. In Lake
Kinneret, a bloom of the cyanobacterium Aphani-
zomenon ovalisporum used the DON pool as its major
N source (Berman 1997, 2001). Uptake rates and
turnover times for total DON and for some of the major
ON constituents in this pool, which have been reported
from a variety of marine and freshwater locations, are
given in Table 2.

Exposure of dissolved organic matter, in particular
humic substances, to sunlight (especially in the UVA
and UVB region) results in the photoproduction of
biologically available N, including NH4

+, dissolved
primary amines, and NO2

– (Bushaw et al. 1996,
Moran & Zepp 1997, Bushaw-Newton & Moran 1999,
Kieber et al. 1999, reviewed in Bronk 2002). This pro-
cess has been studied in humic-rich waters from
many different locales including boreal ponds in
Mannitoba, swamps and an estuary in Georgia (Gao
& Zepp 1998, Bushaw-Newton & Moran 1999), a
Swedish (Jørgensen et al. 1998) and a Venezuelan
lake (Gardner et al. 1998), a river and bayou in
Louisiana (Wang et al. 2000) and in the Orinoco River
plume (Morell & Corredor 2001). Photochemical
release may account for considerable N flux from
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DON in rivers, near-surface marine waters, and fresh-
water environments. For example, Bushaw et al.
(1996) calculated that the additional input by photo-

chemical release from riverine DON into the SE USA
coastal waters increased the available, terrestrially
derived N by 20%. Although sunlight was effective in
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Location DON Uptake rate Turnover time Source
form (nmol N l–1 h–1) (d)

Gulf of Riga, Latvia (M) DON 5.8–56.9 Jørgensen et al. (1999)
Eastern North Pacific (M) DON 22.5–65.0 Cherrier et al. (1996)
Chesapeake Bay, mesohaline (FW-M) DON 326.8 ± 111.8 Bronk & Glibert (1993)
Lake Kizaki, Japan (FW) DON 1.4–21 Haga et al. (2001)
Castle Lake, CA (FW) DON 54 Zehr et al. (1988)
Lake Kinneret, Israel (FW) DON 10.9 ~70 Berman (2001)
Akkeshi Bay, Japan (M) DON 4.3–15.0 Hasagawa et al. (2001)
North Sea (M) Urea 4.9 ± 5.6 Riegman & Noordeloos (1998)
North Sea (M) Urea 0.3 ± 0.3 Riegman & Noordeloos (1998)
Straits of Georgia, Canada (M) Urea 7.37 ± 25.6 Cochlan et al. (1991)
South Atlantic—oceanic (M) Urea 0.5–2.6 Metzler et al. (1997)
South Atlantic—inshore (M) Urea 21.9–55.9 Metzler et al. (1997)
North of Antarctic Peninsula (M) Urea 0.5–1.0 Bury et al. (1995)
Bellingshausen Sea (M) Urea 1.4–9.4 Waldron et al. (1995)
Chesapeake Bay plume (M) Urea 7.5–660 Glibert et al. (1991)
Chesapeake Bay, mesohaline Urea 142.3 ± 70.8 Bronk & Glibert (1993)
Chesapeake Bay (FW–M) Urea 28–332 Lomas et al. (2002)
Shinnecock Bay, Long Island (M) Urea 3.5–28.6 Berg et al. (1997)
Thames Estuary, UK (FW–M) Urea <0.1–7.0 Middelburg & Nieuwenhuize (2000)
Lake Dom Helvicio, Brazil (FW) Urea 2.1–2.9 7.0–9.0 Mitamura et al. (1995)
Lake Jacare, Brazil (FW) Urea 0.8–1.9 15–63 Mitamura et al. (1995)
Lake Carioca, Brazil (FW) Urea 3.0–7.7 4.0–63. Mitamura et al. (1995)
Lake Biwa, Japan (surface) (FW) Urea .0.6–430 Mitamura et al. (2000)
Lake Okeechobee (FW) Urea 190 (10–270) Gu et al. (1997)
Pfiesteria piscicida culture Urea 2.0–7.9 Lewitus et al. (1999)
Delaware Bay DFAA 15–600 Coffin (1989)
Gulf of Riga, Latvia (M) DFAA 0.9–30.8 Jørgensen et al. (1999)
Central Arctic (M) DFAA 1.3–4.2 Rich et al. (1997)
Chesapeake Bay plume (M) DFAA 1.0–92.5 Glibert et al. (1991)
Shinnecock Bay, Long Island (M) DFAA 0.6–7.1 Berg et al. (1997)
Long Island Sound (M) DFAA 3.8–35.3 Fuhrman (1987)
Thames Estuary, UK ( FW–M) DFAA 6.0–150 Middelburg & Nieuwenhuize (2000)
Santa Rosa Sound, FL (M) DFAA 39.4 Jørgensen et al. (1993)
Gulf of Mexico (M) DFAA 5.03 ± 2.12 Jørgensen et al. (1994)
Santa Rosa Sound, FL (M) DFAA 4.23 ± 0.26 Jørgensen et al. (1994)
Eleven Mile Creek, FL (FW–M) DFAA 4.50 ± 1.32 Jørgensen et al. (1994)
Plüssee, Germany (FW) DFAA (in light) a45 (11.7–198)a Münster & Albrecht (1994)
Plüssee, Germany (FW) DFAA (in dark) a33 (10.8–158)a Münster & Albrecht (1994)
Lake Constance (FW) DFAA 23.5 (0.9–115) Rosenstock & Simon (1993)
Lake Constance (FW) DFAA a<0.1–11.5a 2.6–>50b Simon (1998)
Flax Pond, NY (FW) DFAA 73.7 Jørgensen et al. (1993)
Pfiesteria piscicida culture DFAA 950 ± 400 Lewitus et al. (1999)
Delaware Bay DCAA 15–600 Coffin (1989)
Lake Constance (FW) DCAA <22–28.3 3.6–120 Rosenstock & Simon (1993)
Lake Constance (FW) Protein 1.0 (<0.3–>3.0) Rosenstock & Simon (2001)
Santa Rosa Sound, FL (M) DNA ~8.7 Jørgensen et al. (1993)
Gulf of Mexico (M) DNA 3.70 ± 0.53 Jørgensen et al. (1994), Kroer et al. (1994)
Santa Rosa Sound, FL (M) DNA 4.50 ± 0.00 Jørgensen et al. (1994), Kroer et al. (1994)
Eleven Mile Creek, FL (FW–M) DNA 101.2 ± 12.70 Jørgensen et al. (1994), Kroer et al. (1994)
Gulf of Trieste (M) DNA 0.4 Turk et al. (1992)
Baltic Sea (M) DNA 0.7 Turk et al. (1992)
Scripps Pier (M) DNA 5.9 Turk et al. (1992)

aRates as nmol C l–1 h–1

bIncluding winter values

Table 2. Uptake rates and turnover times of dissolved organic nitrogen (DON) compounds in marine (M) and freshwater (FW) 
systems. DFAA: dissolved free amino acids
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producing NH4
+ from DON in samples from 2 tidal

creeks and the Satilla River, Georgia, USA, this was
not the case with surficial (<10 m depth) ground-
water, suggesting that the ambient concentrations of
NH4

+ and the source of DON were both important
factors in determining the impact of irradiation
(Koopmans & Bronk 2002). However, sunlight has
also been found to decrease NH4

+ concentrations
(Bertilsson et al. 1999, Wiegner & Seitzinger 2001)
possibly as a result of interactions with the dissolved
organic matter pool. 

An often neglected ‘sink’ for components of the DON
pool is their removal by adsorption to colloids (Schuster
et al. 1998), sub-micron particles (Nagata & Kirchman
1996), very small particles such as transparent
exopolymer particles (TEP; Alldredge et al. 1993) or
Coomassie Blue proteinaceous particles (Long & Azam
1996). Significant quantities of ON compounds, such as
amino acids and proteins, may be removed from solu-
tion by adsorption to particles, although they remain
susceptible to exploitation by particle-associated bac-
teria and protists. 

INDIVIDUAL ORGANIC N COMPOUNDS

The DON pool is a heterogeneous mixture of com-
pounds that varies widely in space and time within
the aquatic environment. The bulk of the ambient
DON pool at any given time may consist of com-
pounds that are relatively recalcitrant to biological,
chemical or physical degradation, simply because the
more labile and biologically available constituents are
rapidly broken down and utilized (Gardner et al.
1996). 

Below, we discuss some of the better-characterized
constituents of the DON pool: urea, DFAA, DCAA and
proteins, nucleic acids, amino sugars, and humic
substances.

Urea

There has been some debate whether urea should
be included as a component of the DON pool
(Jørgensen et al. 1999, Capone 2000). We recom-
mend that urea, the compound that had the distinc-
tion of being the accidental product of the ‘first
organic synthesis’ by Wöhler in 1828, should be clas-
sified within the DON fraction for the sake of both
consistency and continuity. Irrespective of semantics,
urea is found ubiquitously in natural waters, some-
times in reasonably high concentrations, and is often
a significant source of N and C for aquatic micro-
biota (see below).

Urea assays

Two methods have been used to determine urea con-
centrations in natural waters: (1) Complexation of urea
with diacetyl monoxime to give an imidazolene that
forms a red complex with thiosemicarbazide (Newell et
al. 1967, Koroleff 1983, Mulvenna & Savidge 1992,
Goeyens et al. 1998). (2) An enzymatic method based
on hydrolysis of urea in the presence of added urease
and subsequent determination of released NH4

+

(McCarthy 1970). A study comparing these 2 tech-
niques indicated that the enzymatic method tended to
underestimate urea concentrations because urease
activity was inhibited in some samples (Price & Harri-
son 1987).

Urea sources

Urea is produced by water column bacteria (Cho et
al. 1996, Therkildsen et al. 1997), excreted by marine
and freshwater teleost fish, cetaceans, cryptomonads,
herbivorous marine and freshwater zooplankton,
bivalve mollusks, freshwater crabs (Antia et al. 1991,
Conover & Gustavson 1999, Wiltshire & Lampert 1999),
protists (Johannes 1965), prawns (Chen & Cheng
1993), calanoid copepods (Miller & Glibert 1998) and
likely by many other organisms. The degradation of
purines and arginine through bacterial action can also
give rise to urea (Antia et al. 1991, Berman et al. 1999),
and urea may be released into the water column from
sediments (Burdige & Zheng 1998, Thomsen &
Jahmlich 1998). Rainfall, dust and atmospheric
aerosols are further sources of urea (Timperley et al.
1985), although a recent study concluded that urea is
not always a major DON constituent in wet deposition
(Cornell et al. 1998).

Human-derived pollution and runoff from agricul-
tural areas are important additional sources of urea in
many lakes, reservoirs, estuaries and coastal waters.
Urea accounts for ca. 40% of the total N fertilizer used
globally (Matthews 1994). For example, long-term
studies in Chesapeake Bay have found that external
inputs of urea from the watershed are extremely
significant in this estuarine system (Lomas et al. 2002).

The highest concentrations of urea in aquatic sys-
tems are frequently found at the surface of sediments.
However, urea efflux from sediment only accounts for
a minor fraction of sediment urea production (Lomstein
et al. 1989, Therkildsen & Lomstein 1994), most of
which is mediated by bacteria (Pedersen et al. 1993).
Purines and pyrimidines, but not protein, were impor-
tant substrates for urea generation in an anoxic coastal
sediment (Therkildsen et al. 1996). This report would
suggest that there is an as yet unknown metabolic

288



Berman & Bronk: Review of DON in aquatic ecosystems

pathway of urea production from pyrimidines by bac-
teria in anaerobic sediments. Urea concentrations in
Chesapeake Bay were generally higher but more vari-
able in samples taken from ~1 m above the sediment
than in surface samples (Lomas et al. 2002). High con-
centrations of urea (5.0 to 9.3 µM N) were also found in
the surface films of lake and coastal waters (Saijo et al.
1974).

Although urea generally constitutes only a small per-
centage of DON in natural waters, it contributed from
60 to 80% of the N utilized during much of the year in
the plume of Chesapeake Bay, and up to 50% in many
other coastal regions (Harrison et al. 1985, Kokkinakis
& Wheeler 1988, Glibert et al. 1991). We emphasize
that the ambient concentrations of urea measured at
any given time do not necessarily relate to the actual N
flux passing through the urea pool.

Urea sinks

The potential importance of urea as a N source for
phytoplankton in a variety of aquatic environments is
well documented (McCarthy 1972, Horrigan &
McCarthy 1981, Mitamura & Matsumoto 1981,
McCarthy et al. 1982, Mitamura & Saijo 1986, Price &
Harrison 1988, Mitamura et al. 1994, 1995, 2000, Glib-
ert et al. 1995, Maguer et al. 1996, Bronk et al. 1998,
Shaw et al. 1998, Berman & Chava 1999). Macro-
phytes, such as eel grass Zostera capricorni (Hansen et
al. 2000), and benthic microbial mats (Rondell et al.
2000) can also use urea as a source of N. Although urea
might be considered an ‘ideal’ N substrate, the relative
preference index of McCarthy et al. (1977) indicates
that the sequence of uptake rates in situ is usually
NH4

+ > urea > NO3
–. Possibly the small size of the NH4

+

ion facilitates its passage across cell membranes while
a more energy-expensive, active transport system may
be required to move urea into the cell (Price & Harrison
1988). Another reason for lower urea utilization may be
the energetic costs of synthesizing urease needed to
hydrolyze this substrate. 

Some phytoplankton species show preferential
growth with urea as the sole source of N, compared to
growth on NH4

+, NO3
– or other ON compounds

(Berman & Chava 1999). There are also intriguing
hints that urea may be a major N source for both
marine and freshwater Synechococcus (Berman &
Chava 1999, Collier et al. 1999, Mitamura et al. 2000,
Sakamoto & Bryant 2001) as well as for other cyano-
bacteria. Preferential uptake by picophytoplankton of
urea and NH4

+ over NO3
– was observed in Antarctic

surface waters (Probyn 1985), in Lake Biwa (Mitamura
& Saijo 1986, Mitamura et al. 2000), and in 3 Brazilian
lakes (Mitamura et al. 1995), where turnover times for

urea ranged from 4 to 41 d during the dry season and 3
to 560 d during the wet season (Table 2). 

Urea was a significant N source for phytoplankton in
reservoirs of the Han River system in Korea and was
decomposed more effectively by algae than by bacte-
ria (Mitamura et al. 1989). Studies in estuarine and
coastal systems have also found that N uptake from
urea was predominantly by phytoplankton rather than
by bacteria (Remsen et al. 1972, Savidge & Hutley
1977, Savidge & Johnston 1987, Cho & Azam 1995,
Cho et al. 1996, Tamminen & Irmisch 1996, Lomas et
al. 2002). In contrast, bacterial, rather than phyto-
plankton, uptake of urea predominated in Finnish
coastal waters (Tamminen & Irmisch 1996), Danish
estuarine and coastal waters (Jørgensen et al. 1999),
and in the River Thames (Middelburg & Nieuwenhuize
2000). 

Urea may have effects on phytoplankton in addition
to serving as a direct source of N. Wiltshire & Lampert
(1999) reported that urea excreted by the freshwater
cladoceran Daphnia induced colony formation in the
chlorophyte Scenedesmus obliquus.

Bacteria have long been known to mineralize urea,
both in the ocean (Cho et al. 1996) and in lakes (Satoh
et al. 1980). In Californian coastal waters, urea regen-
eration rates by bacteria were ~100-fold greater than
for urea uptake (Cho et al. 1996). Temporal differences
between production and uptake may account for some
of the wide variability often shown in urea concentra-
tions in natural waters (McCarthy 1972, McCarthy &
Kamykowski 1972, Berman 1974). In contrast, other
studies have found close coupling between urea pro-
duction and uptake (Hansell & Goering 1989, Lomas et
al. 2002). 

Measurements of urea uptake by phytoplankton and
bacteria have generally relied on the use of 15N-tagged
substrates. By using simultaneous additions of dual-
labeled urea (15N and 14C), Hansell & Goering (1989)
were able to correct for problems of isotope dilution
and thus improve estimates of rates of urea production
and uptake by natural phytoplankton in the Bering
Sea. Their results indicate that urea is in a dynamic
steady state, with rates of in situ urea production ap-
proximately equal to consumption. In another study
using this technique, Bronk et al. (1998) found that not
correcting for urea isotope dilution sometimes resulted
in a substantial underestimate of urea uptake rates,
and that urea regeneration was generally a small, but
highly variable, source of N. 

Recently Peers et al. (2000) showed that a constitu-
tive urease activity was present in the marine diatoms
Thalassiosira pseudonana and T. weissflogii regardless
of N source. Urease activity in T. weissflogii was unaf-
fected by iron limitation but sensitive to that of nickel
(Milligan & Harrison 2000). Nickel is a constituent of
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the active site of algal and cyanobacterial ureases, and
has been shown to be an essential micronutrient for
urea utilization by marine Synechococcus (Sakamoto &
Bryant 2001) and by freshwater Anabaenca cyclindri-
cus (Mackerass & Smith 1986). 

Many species from all major phytoplankton taxa of
freshwater and marine phytoplanktonic algae (Antia et
al. 1991) and cyanobacteria (Berns et al. 1966) can use
urea effectively as a source of N for growth. Some of
these species have a somewhat notorious reputation as
‘nuisance algae’ and may cause toxic blooms. Potential
uptake of urea by the brown tide chrysophyte, Aureo-
coccus anophagefferens, was substantially greater
than uptake of other N substrates including NH4

+, a
mixture of amino acids, or NO3 (Berg et al. 1997). This
ability to exploit urea may have contributed to the
recent prevalence of Aureococcus blooms in NE USA
coastal waters (Duzurica et al. 1989, Berg et al. 1997,
LaRoche et al. 1997) although this may not always be
the case (Gobler & Sañudo-Wilhelmy 2001).

Other toxic dinoflagellates that can utilize urea
include Gymnodinium breve (Steidinger et al. 1998;
now renamed Karenia brevis) and Pfiesteria piscicida
(Lewitus et al. 1999). High levels of urea (>1.5 µM N)
were found concomitantly with dinoflagellate blooms
in commercial hybrid striped bass aquaculture ponds
(Glibert & Terlizzi 1999), suggesting that urea specifi-
cally stimulated growth of G. galatheanum, G. nel-
sonii, Prorocentrum minimum and Katodinium. The
high abundance of dinoflagellates may also have
enhanced urea excretion by the fish in these ponds. A
potentially toxic cyanobacterium, Aphanizomenon
ovalisporum, isolated in non-axenic cultures from Lake
Kinneret, grew optimally on urea as the sole N source.
Mass balance determinations indicated that this
organism utilized mostly DON as a direct or indirect
source of N rather than N2 fixation when it developed
into a bloom in the lake in 1994 (Berman 1997, 2001). 

We suggest that urea may be a more important
source of N nutrition for aquatic microbiota in both
freshwater and marine environments than has been
generally appreciated. Further investigation of the role
played by urea as a source of N nutrition in natural
waters is certainly warranted.

DFAA, DCAA, and proteins

The importance of DFAA as sources of C, N and
energy for both marine and freshwater heterotrophic
bacteria has long been known (Williams et al. 1976,
Zehr et al. 1985, Wheeler & Kirchman 1986). Release
and uptake of amino acids tend to be closely linked
(Fuhrman 1987) so that ambient concentrations of
DFAA are usually very low and represent only a

small fraction of measured DON. Nevertheless,
DFAA probably account for a substantial fraction of
the N flux into and out of the DON pool. Although
bacteria are still assumed to be the major clients for
utilizing DFAA in aquatic environments, it is now
apparent that many phytoplankton species can also
use amino acids as N sources (Table 3), most proba-
bly by virtue of possessing cell surface amino-
oxidases (Palenik & Morel 1990a,b, 1991, Pantoja &
Lee 1994, Mulholland et al. 1998). These enzymes
hydrolyze amino acids externally to NH4

+, which is
then taken up by the cell.

The pool of DCAA compounds (containing proteins,
oligopeptides, polypeptides, and humic-bound amino
acids; Hubberten et al. 1995) often comprises the
largest identifiable portion of DON pools. Three main
components of the DCAA fraction have been proposed
(Keil & Kirchman 1993): (1) a rapidly cycling (hours to
days) protein, similar to that freshly extracted from
phytoplankton; (2) a more recalcitrant, abiotically glu-
cosylated protein that is very resistant to degradation;
and (3) a pool of non-proteinaceous compounds, per-
haps consisting of amino acids bound or adsorbed to
humic substances or to small particles (Hubberten et
al. 1994).

In the ocean, dissolved protein concentrations are
low in surface waters, and increase below the euphotic
zone (Bronk 2002). In some reports of dissolved protein
determinations in German and Japanese lakes (Stein-
berg 1977, Hama & Handa 1980, 1983), between 55
and 74% of the proteins and polypeptides were
<5 kDa. By contrast, most of the dissolved protein in
the ocean appears to have a much higher MW. Some,
as yet unquantified, portion of this pool consists of a
ubiquitous, dissolved protein (MW 48kDa) that may be
derived from porin-P, part of the phosphorus transport
system in gram-negative bacterial cell walls (Tanoue
1995, Tanoue et al. 1995, 1996). 

DFAA, DCAA, and protein assays

The most commonly used method for quantifying
DFAA is based on pre-column derivatization with
ortho-phthaldialdehyde (OPA), followed by separation
with HPLC (Lindroth & Mopper 1979, Mopper & Lin-
droth 1982). A flow injection method to determine the
concentrations of primary amines in seawater gave
results comparable to HPLC separation (Delmas et al.
1990, Petty et al. 1992). An alternate derivatization
technique using 6-aminoquinolyl-N-hydroxysuccin-
imidyl carbamate that detected both primary and sec-
ondary amines was insensitive to amino acid concen-
trations below 200 nM (Jørgensen & Jensen 1997).
These authors noted, however, that derivatization
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procedures, such as with OPA, which tag only the pri-
mary amines, underestimate levels of DFAA and
DCAA in natural waters.

Several approaches have been used to hydrolyze
DCAA to DFAA. The original acid hydrolysis with 6N
HCl required 20 h at 110°C (Parsons et al. 1984). A
vapor phase hydrolysis method (Tsugita et al. 1987)
was modified by Keil & Kirchman (1991a,b), who found
that the modified technique gave up to 3-fold higher
DCAA concentrations than the method of Parsons et al.
(1984). The vapor phase technique, combined with
microwave radiation, was used by Jørgensen & Jensen
(1997) to achieve simultaneous hydrolysis of 20
samples in 20 min. In all cases, after hydrolysis of the
DCAA, the total dissolved amino acids (i.e. DCAA plus

DFAA) in the sample were quantified by pre-column
derivatization and separation by HPLC. The DCAA
concentration was then obtained by subtracting DFAA,
measured in the same, non-hydrolyzed water sample,
from the concentration of DCAA plus DFAA. 

Few studies have attempted to quantify or character-
ize dissolved proteins in natural waters. In order to iso-
late and identify a range of dissolved proteins in sea-
water from the Indian and Antarctic Oceans, Tanoue
and colleagues (Tanoue 1995, Tanoue et al. 1995,
1996) used tangential-flow ultrafiltration, concentra-
tion and purification by precipitation with trichloro-
acetic acid and final separation with sodium dodecyl-
sulphate-polyacrylamide gel electrophoresis (SDS-
PAGE). Immunochemical methods were applied to fur-

ther characterize these dissolved proteins
(Suzuki et al. 1997). Note that these meth-
ods are qualitative and do not provide
concentrations of proteins in situ. The
availability of new fluorescent tags such
as Nano-orange (Molecular Probes) may
lead to more sensitive and reliable meth-
ods for dissolved protein measurements.

Sources of DFAA, DCAA, and proteins

DFAA and DCAA are released from liv-
ing phytoplankton directly (Myklestad et
al. 1989, Bronk & Glibert 1993a,b, Bronk
et al. 1994), as well as by viral lysis or
autolysis of senescent algae (Gardner et
al. 1987, Sundh 1992, Agusti et al. 1998).
Zooplankton generate these compounds
through sloppy feeding, excretion and
upon dissolution of their fecal material.
Protists grazing on bacteria may also pro-
duce significant amounts of DCAA (Fer-
rier-Pagés et al. 1998, Rosenstock &
Simon 2001). Release of DFAA and
DCAA may occur from the solubilization
of organic seston, of marine or lake snow
particles, or transparent proteinaceous
particles (Long & Azam 1996, Grossart &
Simon 1998, Berman & Viner-Mozzini
2001). 

The most detailed study of seasonal and
vertical dynamics and turnover of DFAA
and DCAA in freshwaters was made by
Simon and colleagues (Simon 1998,
Simon & Rosenstock 1992, Rosenstock &
Simon 1993, 2001, Simon et al. 1998) in
Lake Constance, Germany. Maximum
DFAA release was in winter until the
onset of the spring phytoplankton bloom.
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Organism System Source

Chrysophyta
Cyclotella cryptica M Liu & Hellebust (1974)
Phaeodactylium tricornutum M Flynn & Syrett (1986)
Navicula incerte M Landymore & Antia (1977)
N. pavillardi M Lewin & Hellebust (1975)
Nitzschia angularis M Lewin & Hellebust (1976)
N. ovalis M Lewin & Hellebust (1978)
Skeletonema costatuma M Fisher & Cowdell (1982)
Asterionella japonicaa M Fisher & Cowdell (1982)
Nitzschia closteriuma M Fisher & Cowdell (1982)
Coscinodiscus sp.a M Fisher & Cowdell (1982)
Fragilaria sp.a M Fisher & Cowdell (1982)
Chaetoceros debile M Poulet & Martin-Jezequel (1983)
Melosira mediocris FW Ming & Stephens (1985)

Haptophyta
Isochrysis galbana M Landymore & Antia (1977)
Prymnesium parvum M Palenik et al. (1988)
Emiliana huxleyi M Palenik & Henson (1997)

Chlorophyta
Platymonas subcordiformis M North & Stephens (1969)
Chlorella vulgaris FW Pettersen & Knutsen (1974)
C. fusca FW Richards & Thurston (1980)
Chlamydomonas reinhardtii FW Kirk & Kirk (1978a)
Volvox carteri FW Kirk & Kirk (1978b)
Pandorina morum FW Kirk & Kirk (1978c)
Scenedesmus obliquus FW Kirk & Kirk (1978c)
Ankisrodesmus braunnii FW Kirk & Kirk (1978c)
Tetraselmis subcordiformis M Qafaiti & Stephens (1988)
Pediastrum duplex FW Berman et al. (1991)
Scenedesmus sp. FW Berman et al. (1991)

Cyanobacteria
Anabaena variabilis FW Theil (1988)
Anacystis nidulans FW Lee-Kaden & Simonis (1982)
Agmenellum quadruplicatum M Kapp et al. (1975)

Pyrrophyta
Gymnodinium breve M Baden & Mende (1979)
Alexandrium fundyense M John & Flynn (1999)
aMay not have been bacteria-free cultures

Table 3. Freshwater and marine phytoplankton utilizing amino acids as 
nitrogen sources in axenic cultures. M: marine; FW: freshwater
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DCAA and protein peaked during the spring and sum-
mer algal blooms. Protein accounted for 1 to 31% of
DCAA (Rosenstock & Simon 2001). These authors also
give a detailed analysis of the seasonal changes of the
LMW and HMW fractions of the DCAA pool in this
lake. The microplankton fraction (1 to 140 µm), espe-
cially phytoplankton and ciliates, was always the major
source of DFAA and protein. A somewhat similar pat-
tern was observed in 2 Swedish lakes where DFAA
were preferentially released in spring, in contrast to
more protein appearing during summer (Sundh 1992). 

Sinks for DFAA, DCAA, and proteins

Much is known about the turnover of DFAA and
their significance for growth of heterotrophic bacteria
in both freshwater and marine environments (Gardner
& Lee 1975, Williams et al. 1976, Jørgensen 1982, 1987,
Gardner et al. 1987, 1998, Keil & Kirchman 1991a,b,
Simon & Rosenstock 1992, Jørgensen et al. 1993, Mid-
delboe et al. 1995). Recently Ouverney & Fuhrman
(2000) reported the significant finding that marine
Archaea are also capable of taking up amino acids at
nanomolar levels.

Extensive dependence of marine heterotrophic bac-
teria on DFAA and DCAA has been documented in
estuarine and coastal waters in Long Island Sound
(Fuhrman 1987), Delaware Estuary (Coffin 1989, Mid-
delboe et al. 1995), Chesapeake Bay (Fuhrman 1990),
the Mississippi River plume (Cotner & Gardner 1993),
as well as in pelagic waters (subarctic Pacific; (Kirch-
man et al. 1989a,b, Keil & Kirchman 1991a,b). DFAA
were used preferentially to DCAA unless the concen-
tration of the former was very low (Keil & Kirchman
1991a,b). This may have been the situation in the
extremely oligotrophic surface waters of the Northern
Sargasso Sea, where protein was the dominant form of
ON utilized for bacterial production (25 to 60%; Keil &
Kirchman 1999). In locations where DFAA concentra-
tions were high with rapid turnover, or when DFAA
turnover exceeded bacterial N demand, high rates of
NH4

+ regeneration were often observed (Kirchman et
al. 1989a,b, Keil & Kirchman 1991a,b, Cotner & Gard-
ner 1993, Gardner et al. 1993). 

In some environments, DCAA were of equal or even
greater importance than DFAA for bacterioplankton
growth (Coffin 1989, Coffin et al. 1993, Kroer et al.
1994, Rosenstock & Simon 2001). In Lake Constance,
DCAA and DFAA supported 45 and 13% of bacterial
biomass production, respectively (Rosenstock & Simon
2001), as an annual average. The sum of DFAA and
protein supported 58% of bacterial C and 80% of bac-
terial N demands (Rosenstock & Simon 2001). There is
1 report of bacterial utilization of DCAA, mostly bound

to humic substances, in a Pennsylvania stream (Volk et
al. 1997). 

As shown in Table 3, many marine and freshwater
algae can grow on amino acids as N sources (reviewed
in Flynn & Butler 1986); additional earlier data are also
given in Antia et al. (1975), Turner (1979), and Neilson
& Larsson (1980). Care must be taken in extrapolating
results from culture experiments to the real environ-
ment if unrealistically high concentrations of organic
substrates were used. For example, although the toxic
dinoflagellate Alexandrium fundyense could assimi-
late a wide range of amino acids, with uptake being
greatest during the exponential phase (Ogata et al.
1996), this organism was incapable of using amino
acids for growth (John & Flynn 1999). Nevertheless,
the discovery of cell surface amino-oxidases in many
phytoplankton species (Palenik & Morel 1990a,b,
Pantoja & Lee 1994) suggests that amino acids can
indeed serve as N sources for algae in aquatic systems
(Mulholland et al. 1998). 

There is a dearth of information on the fate of
dissolved protein in natural waters. Some proteins are
undoubtedly degraded enzymatically to peptides and
DFAA (Hollibaugh & Azam 1983, Pantoja & Lee
1999a,b), and some are transformed to recalcitrant
organic forms (Keil & Kirchman 1994). Curiously, there
is 1 report of heterotrophic flagellates using dissolved
proteins (ferritin, casein, albumin, and concavalin A)
as a direct source of nutrition (Tranvik et al. 1993). We
have no idea how widespread or important this process
might be, but this observation raises the interesting
possibility that members of the planktonic community,
other than bacteria and phytoplankton, can use pro-
teins and other constituents of the DON pool.

Nucleic acids and their breakdown products

Nucleic acids, and degradation products such as
nucleotides, purines and pyrimidines, are relatively
neglected constituents of DON pools. Dissolved DNA
and RNA (dDNA and dRNA) are part of the general
pool of HMW DON, and would be expected to result
from cell lysis, sloppy zooplankton feeding, and protis-
tan grazing (Weinbauer & Peduzzi 1995a,b, Ishii et al.
1998, Kawabata et al. 1998). In a 2-stage chemostat
experiment, Turk et al. (1992) showed that nanoflagel-
lates grazing on bacteria released dDNA. Pioneering
studies of dDNA and particulate DNA dynamics in
marine and freshwater environments were published
by Paul et al. (1988, 1989) and others (Beebee 1991, De
Flaun et al. 1987, Karl & Bailiff 1989). 

Reported concentrations of dDNA in marine and
freshwaters range from several to ~100 µg N l–1 (Paul
et al. 1987, Bailiff & Karl 1991, Ishii et al. 1998). How-
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ever, in a recent study, Siuda & Chrost (2000) pointed
out some difficulties in quantifying the concentrations
of dDNA. A considerable, but not easily defined, part
of total dDNA may be adsorbed on particles or colloids
and substantial proportions of measured dDNA may
actually derive from viral DNA that has passed
through 0.45 or 0.2 µm filters (Beebee 1991, Weinbauer
& Peduzzi 1995b). 

D-DNA assays

Four analytical methods have been used to quantify
ambient concentrations of dDNA in natural waters:
(1) Staining with Hoechst dye (De Flaun et al. 1986).
(2) Precipitation with CTAB (cetyltrimethyl-ammo-
nium bromide) followed by fluorometric detection after
staining with DAPl (4,6 diamidino 2 phenylindole; Karl
& Bailiff 1989, Siuda & Güde 1996a). (3) Measuring the
decrease in DAPl fluorescence upon enzymatic hydrol-
ysis of dDNA by DNase (Siuda & Chrost 2000). This
method is believed to obviate overestimates (from 27 to
54%) of actual DNA concentrations as given by the
CTAB technique and to give a more appropriate mea-
sure of ‘available’ dDNA. (4) Detection with ethidium
bromide (Sakano & Kamatani 1992). 

D-DNA sinks

Paul et al. (1989) were the first to measure in situ
dDNA turnover using 3H-DNA in oligotrophic and
eutrophic subtropical Florida lakes. The turnover rates
were rapid (~10 h) in both systems. Similarly rapid
turnover times for dDNA were reported in Lake Con-
stance (Siuda & Güde 1996a). Slower rates were found
for the hydrolysis of plasmid DNA added to river and
marine waters (Alvarez et al. 1996) or to epilimnetic
waters in Lake Biwa, Japan (Matsui et al. 2001). In the
latter case, the dDNA rapidly lost its transformation
ability and was completely hydrolyzed after 170 h. This
observation was consistent with earlier results (Paul et
al. 1988) showing that DNA gene sequences from
added DNA were not assimilated by estuarine bacte-
ria. By contrast, in the hypolimnion of Lake Biwa,
exogenous dDNA was not perceptibly degraded, and
seeded plasmid DNA did not lose its transformation
efficiency even after 170 h (Matsui et al. 2001). This
result raises the possibility that dDNA may be stable in
hypolimnetic lakes or deep marine waters for a rela-
tively long time (weeks or more), and thus may remain
capable of causing genetic transformation. It is there-
fore feasible that recombinant DNA from genetically
modified microorganisms, released intentionally or
unintentionally, might retain its transformation

potency for extended periods in hypolimnetic or deep
aquatic environments.

In studies with seawater bacterial cultures, Jør-
gensen et al. (1993) found that dDNA could supply up
to 5 and 10% of the bacterial C and N requirement,
respectively, in batch cultures of marine bacteria.
However, most studies have focused on dDNA (C:N:P
ratio, 10:4:1) in marine and freshwaters as a potential
source of phosphorus rather than N nutrition (Siuda &
Güde 1996b). Degradation of dDNA was rapid in a
P-limited region of the Adriatic Sea, but much slower
in an N-limited region of the Californian Bight (Turk et
al. 1992).

The incorporation of dDNA by natural bacteria in
estuarine microsms was also studied by Jørgensen &
Jacobsen (1996). When no nutrients were added,
dDNA supplied 6, 8 and 46% of bacterial C, N and P
requirements, respectively. Tests of uptake preference
by the bacterioplankton for DNA of different sizes
(100, 250 and 569 bp) showed that the smallest frag-
ments were the most readily utilized. 

With 2 exceptions (Koenings & Hooper 1973, Sakano
& Kamatani 1992), there do not appear to be any stud-
ies of dRNA in natural waters. 

Nucleotides and derivatives

The dissolved nucleotide that has received the most
research attention has been ATP (Azam & Hodson
1977). Bjørkman & Karl (2001), using a new method to
measure dissolved ATP and GTP (guanosine tri-phos-
phate), reported concentrations of 70 ng l–3 in summer
and ~30 ng l–3 in winter of dissolved ATP in the 0 to
100 m layer of the oligotrophic North Pacific Ocean
(Stn Aloha). Although active cycling of nucleotides and
their purine bases probably occurs, this process may be
more important in providing P rather than N to the
microplankton.

Purines and pyrimidines and their derivatives are
also potentially significant DON compounds. Purines,
such as guanine and hypoxanthine, are rapidly de-
graded to yield urea and/or NH4

+ that can be easily
used by phytoplankton and bacteria (Antia et al. 1980,
1991, Berman et al. 1999). Pyrimidines are also
degraded but seem to be less effectively taken up by
microbiota than purines (Antia et al. 1991). No data
concerning the rates of cycling of these compounds in
aquatic systems are available, but this pathway of N
flux may be important in some environments (Antia et
al. 1980).

Hypoxanthine, guanine, uric acid and their deriva-
tives (e.g. allantoic acid) can support microalgal growth
N requirements for many algal taxa (Droop 1961, Guil-
lard & Ryther 1962, Guillard 1963, Antia & Chorney
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1968, Kapp et al. 1975, Oliveira & Huynh 1990, Lisa et
al. 1995, Berman & Chava 1999). One source for these
purines may be excretion from ciliates (Antia et al.
1980). Cytoplasmic inclusions composed mainly of hy-
poxanthine and guanine were isolated from the marine
hymenostone ciliate Parauronema acutum (Soldo et al.
1978). Guanine, hypoxanthine, adenine and dihydro-
uracil were excreted from freshwater ciliates, such as
species of Paramecium (Soldo & Van Wagtendonk
1961). Berman et al. (1987) observed the release of ATP
in ‘reconstituted’ seawater cultures containing bacteria,
pico-phytoplankton and heterotrophic flagellates. We
are not aware of any more recent studies that have
investigated the release of purines or related ON
compounds from protists in aquatic environments.

Amino sugars

There have been few studies of dissolved amino
sugars in aquatic environments. Amino sugars may be
produced as breakdown products of bacterial, cyano-
bacterial and algal cell walls, chitin, and microbial and
fish mucus (Blackwell et al. 1967, Sutherland 1985,
Nakagawa et al. 1988, Bertocchi et al. 1990, Decho
1990). Amino sugars have been found in lakes (Göcke
1970, Steinberg 1977, Bunte & Simon 1999), reservoirs
(Hejzlar 1989), and rivers (Ittekkot et al. 1982, Chu-
doba et al. 1986). In contrast to freshwater, amino
sugars in marine systems cannot be detected by ion-
exchange HPLC and the pulsed amperometric method
used for dissolved monosaccharides (Mopper et al.
1992) because they are selectively removed in the
desalting step prior to HPLC (M. Simon pers. comm.).
However, McCarthy et al. (1998) determined amino
sugars in marine HMW DON using thermal desorb-
tion-mass spectrometry and pyrolysis.

The reported concentrations of amino sugars (pre-
dominantly glucosamine and N-acetyl-glucosamine)
range from about 10 to 100 µg l–1, somewhat lower but in
the same order of magnitude as levels of amino acids.
Nedoma et al. (1994), using a modification of the method
of Barnes (1984), reported concentrations of dissolved
amino sugars ranging from ~20 to 1200 µg l–1 in 2 moun-
tain lakes, 2 reservoirs, 2 river backwaters and 2 highly
eutrophic fishponds. Approximately 42% of the dis-
solved amino sugars in the Rimov Reservoir, Czech
Republic, consisted of N-acetyl-glucosamine and glu-
cosamine (Hejzlar 1989). Other amino sugars identified
were 2-amino-2-deoxygalacturonic acid and fuco-
samine, probably originating from bacterial cell walls.
Using autoradiography, Nedoma et al. (1994) showed
that microorganisms (bacteria, cyanobacteria and di-
atoms), capable of taking up N-acetylglucosamine, were
present in all the water bodies studied. Overall, the in-

ference from this work is that glucosamine and N-acetyl-
glucosamine could be important bacterial substrates for
organic C and N in some aquatic environments. Early
studies by Antia & Chorney (1968) and Berland et al.
(1976) showed that many species of marine algae could
use glucosamine for N nutrition. Several non-axenic
freshwater algal cultures also grew successfully on this
compound as a sole N source (Berman & Chava 1999). 

Humic substances

Variable, but often substantial, proportions of DON
are comprised of poorly characterized humic sub-
stances falling into 2 operationally defined categories:
humic acids, insoluble at pH < 2.0 and obtained by
retention on XAD–8 resin, and fulvic acids, separated
with XAD-4 resin (Aiken 1985, 1988). Schnitzer (1985)
identified 2 types of nitrogenous humic components:
(1) a major fraction consisting of LMW N compounds
(such as amino acids, purines, pyrimidines) loosely
held by, or adsorbed to, the humic core structure, and
(2) an N fraction that is integral to the humic molecule
itself (Lytle & Perdue 1981). Presumably only the first
humic component is actively involved in short-term N
flux. Most humic compounds in freshwater and coastal
environments are of terrestrial origin, but some of
them in pelagic oceans and large lakes may be derived
from organic matter produced autochthonously.

Not much is known about the potential of humic sub-
stances to serve as a source of N for planktonic micro-
biota, although it now appears that they may be some-
what less refractory than previously believed (Amon &
Benner 1994, Moran & Hodson 1994a,b, Gardner et al.
1996). Humic bound DCAA has been shown to be at
least partially available to bacteria (Hubberten et al.
1994, 1995, Volk et al. 1997, Amon et al. 2001). Some
attention has been focused on the potential impact of
these compounds on phytoplankton development in
coastal waters. Increasing amounts or different types
of humic compounds derived from human activities
may have caused eutrophication and the proliferation
of toxic dinoflagellates in these waters. The N bound to
humic substances may be directly available to some
algal groups, such as dinoflagellates (Granéli et al.
1985, Carlsson & Granéli 1993, Carlsson et al. 1993).
When humic material, isolated from a river, was added
to a phytoplankton assemblage from a Swedish fjord,
both bacterial and algal production were stimulated
(Carlsson et al. 1993). In this instance, the bacteria
used both C and N from the humic compounds directly
for growth; subsequently, the phytoplankton exploited
the regenerated DON and NH4

+. As yet, these studies
have been limited to estuarine and coastal waters in
the Baltic Sea and the Atlantic coast of the USA.
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UTILIZATION OF MULTIPLE N SOURCES

A somewhat neglected topic is the simultaneous
uptake and utilization of mixtures of N substrates
(organic or inorganic/organic) by phytoplankton
(Antia et al. 1991). With some exceptions (Pintner &
Provasoli 1963, Pettersen 1975, Flynn & Wright 1986,
Collos 1987), few studies have examined how algae or
bacteria respond to multiple ON sources, although this
situation corresponds more closely to real life environ-
ments than experiments with uptake of only a single
ON source. The inhibitory effects of NH4

+ on urea and
DFAA uptake have been extensively documented but,
as yet, little is known about the interplay of various
DON sources that are used by phytoplankton in envi-
ronments with limited DIN availability. Ricketts (1988)
studied the separate and combined uptake and assim-
ilation of NH4

+, NO3
–, urea, and glycine in the marine

prasinophyte, Tetraselemis strata, and concluded that
this organism maintained a relatively constant rate of
total N-assimilation, irrespective of the mixture of uti-
lizable N-sources. In eutrophic Lake Okeechobee,
Florida, Gu et al. (1997) analyzed total N utilization by
a summer cyanobacterial bloom and found that 53% of
the uptake was from NH4

+, 19% was from NO3
–, 16%

was from urea, and 12% was by N2 fixation. The
growth of a bloom of Aphanizomenon ovalisporum in
Lake Kinneret used DON and DIN in a ratio of ~4:1 for
N supply, with only a minor amount of the N require-
ment derived from N2 fixation (Berman 1997, 2001). A
similar situation was reported in Glebokie Lake,
Poland, where cyanobacterial growth was mainly sup-
ported by DON with only a small proportion con-
tributed by N2 fixation (Krupka 1989). Presumably the
higher energetic costs involved in fixing N2 compared
to using reduced N in organic compounds will dispose
azotrophic cyanobacteria to exploit suitable DON
sources preferentially if these are available.

There have been several studies of the use of multi-
ple N sources by marine bacteria (Middelboe et al.
1995, Jørgensen et al. 1999). Tupas & Koike (1990)
examined the differential uptake of NH4

+ and DON
(mostly DCAA) by natural bacterial assemblages in
seawater cultures that were enriched with dissolved
substances released by the mussel Mytilis edulis. Even
when large amounts of DON were utilized, NH4

+ con-
tinued to be taken up and incorporated into the bacte-
rial cells. Simultaneous assimilation and regeneration
of NH4

+ occurred, contradicting the idea that NH4
+ uti-

lization occurs in natural bacterial populations only
when ON is limiting. Middelboe et al. (1995) found that
bacterial populations in batch cultures from the
Delaware Bay Estuary derived very different propor-
tions of their N requirements from DFAA, DCAA and
NH4

+ depending on whether they were C- or N-

limited, or in the exponential growth phase. In Santa
Rosa Sound, DFAA were the dominant N source for
bacteria, followed by DCAA and then NH4

+ (Jørgensen
et al. 1999).

In Lake Constance, Simon & Rosenstock (1992) and
Rosenstock & Simon (1993) followed the simultaneous
bacterial uptake of NH4

+, DFAA and DCAA and found
distinct seasonal patterns. As noted by Simon & Rosen-
stock (1992), when studying the bacterial use of multi-
ple N substrates it is important to consider the avail-
ability of NH4

+ and carbohydrates versus amino acids
and, in addition, the molar percent of available DFAA
and DCAA relative to the amino acid requirements for
protein synthesis. DFAA and DCAA are taken up with-
out any NH4

+ regeneration if the molar percent compo-
sition of the amino acid pool is similar to the amino acid
requirements for protein synthesis. When 1 or a few
amino acids are assimilated in excess, they are deami-
nated to release NH4

+. Simon (1991) and Simon &
Rosenstock (1992) used the mole percent composition
of the bacterial intracellular amino acid pools and the
intracellular isotope dilution of individual DFAAs to
estimate the relative importance of NH4

+ and DFAA in
bacterial N uptake.

A particularly interesting and ecologically signifi-
cant case of uptake of multiple N sources is that of Tri-
chodesmium (reviewed in Mulholland & Capone
2000). This azotrophic marine cyanobacterium is quan-
titatively the most important fixer of N2 in the pelagic
ocean. Cells of Trichodesmium are usually found as
spherical aggregates (puffs) or fusiform bundles (tufts),
each containing several hundred multicellular fila-
ments (trichomes). Not all cells within filaments or
colonies contain nitrogenase, the enzyme required for
fixing N2. Most of the active N2 fixation occurs during
the few hours around midday and only in some parts of
the trichome (Berman-Frank et al. 2001). Recently it
has become evident that in the ocean, trichomes and
colonies of Trichodesmium simultaneously fix N2 and
take up combined N, including forms of DON (NH4

+,
NO3

–, urea, and amino acids; Mulholland & Capone
2000). In cultures, Trichodesmium cells grown on urea
were reported to be devoid of nitrogenase (Ohki et al.
1992), but this was not the case under all growth
conditions (Mulholland et al. 1999).

Trichodesmium colonies that are actively fixing N2

also release DON and NH4
+ (Capone et al. 1994, Glib-

ert & Bronk 1994, Mulholland et al. 1999). It has been
suggested that N, primarily in the form of amino acids,
is released by actively growing cells and that the
released DON is utilized by those Trichodesmium cells
that lack nitrogenase, possibly through the mediation
of cell surface amino-oxidases. 

The details of N cycling within Trichodesmium
colonies in the ocean are presently the focus of
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intense research. This process is obviously complex
and certainly involves other organisms usually associ-
ated with Trichodesmium colonies, such as harpacti-
coid copepod grazers (O’Neil et al. 1996, O’Neil 1998).
Some, perhaps considerable, part of the DON uptake
attributed to Trichodesmium may be due to associated
heterotrophic bacteria. Nevertheless, it seems clear
that in their natural environment, Trichodesmium are
simultaneously using a variety of N sources, including
DON.

In general, situations where multiple sources of N
are utilized concomitantly may well be the rule rather
than the exception and may reflect the micro-hetero-
geneity (patchiness) of aquatic systems. Undoubtedly
the use of multiple nutrient sources by aquatic micro-
organisms is a topic deserving more extensive
research attention.

CONCLUSION

As we have documented, there has been consider-
able progress in our understanding of various aspects
of aquatic DON over the last decade. Nevertheless,
there are still few studies that have quantified the
amounts of N flux into, and out of, the DON pool rela-
tive to the other major N pools in any specific lake,
estuary or marine system. Although it seems clear that
components of DON pools such as urea or amino acids
may sometimes be ‘major players’ in N flux, we still
lack a general evaluation of the quantitative or qualita-
tive importance of DON cycling in freshwater and
marine ecosystems.

In this review we have attempted to summarize the
current ‘state of the science’ in respect to aquatic
DON. Our take-home message is simple. The DON
fraction in natural waters is by no means inert. DON
should not be neglected either as a source or as a sink
for N. Many biotic and abiotic processes generate
DON in both marine and freshwater systems. The
DON pool acts as a source of N nutrition for many
microorganisms, and in so doing may affect the
species composition of the ambient microbial assem-
blage. There is still a need for a greater appreciation
and understanding of the potential role of DON as a
dynamic participant in aquatic ecosystems, especially
in freshwater environments.
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