Bioinformatic tools for metagenomic data analysis

MEGAN

- blast-based tool for exploring taxonomic content

MG-RAST (SEED, FIG)

- rapid annotation of metagenomic data, phylogenetic classification and metabolic reconstruction

CAMERA (JCVI, Calit2, UCSD)

- metagenomic data repository and blast server

Getting started

http://urkaryote.mit.edu/files/

Download MEGAN and metagenomic datasets BLAST

files:

MEGAN (Metagenome analyzer)

D.H. Huson et al., MEGAN analysis of metagenome data. **Genome Research**, 17:377-386 (2007).

http://www-ab.informatik.uni-tuebingen.de/software/megan/welcome.html

Software designed to analyze metagenomic datasets and assign reads to a known taxon.

What organisms are present and what are their relative proportions?

What types of types of genes are present?

Input files:

- BLAST files; BLASTX, BLASTN or BLASTZ
- NCBI-NR, NCBI-NT, NCBI-ENV-NR, NCBI-ENV-NT or genome specific databases

Image from Huson et al., 2007

MEGAN uses NCBI taxonomy to summarize and order results.

Taxonomy Nodes (all dates)

Ranks:	higher taxa	genus	species	lower taxa	total
All taxa	18384	45663	327292	48065	439404
Archaea	<u>193</u>	107	3368	99	376
Bacteria	2378	1824	102732	4453	11138
Eukaryota	15345	43449	211648	12403	282845
Viruses	444	276	4866	31080	36666

http://www.ncbi.nlm.nih.gov/Taxonomy/Selector/taxse.cgi

MEGAN (Metagenomics analyzer)

Lowest common ancestor (LCA) assignment algorithm:

Filters set by user:

- Min. Support for Taxa (default = 2)
- Min. Score (default = 30.0)
- Top Percentage (default = 10.0)
- Win ("Winner") Score (default = 0)

Single metagenomic sample

Comparison of metagenomic samples

OMZ_20m_allDNA.fna.5000.keepVSnr_20080515.FF.b10.v10.c250
 OMZ_45m_allDNA.fna.5000.keepVSnr_20080515.FF.b10.v10.c250

MEGAN (Metagenomics analyzer)

Let's start playing with MEGAN!

MEGAN on startup screen:

- will take a minute or so to load NCBI tree and taxonomy

Step 1: Importing a BLAST file:

- File→Import. Choose import file type (e.g. BLASTX, BLASTN)

Step 2: Choosing MEGAN output format:

- Full Dataset OR Summary (choose Full Dataset - greater control over filters)

Step 3: Importing and parsing the BLAST file:

- Note: some taxa will remain unidentified!

Step 4: Generating tree showing taxonomic distribution of reads:

- Note: NCBI tree replaced by taxonomy of assigned reads

Step 5: Setting filtering criteria

- Options → Min Support, Min Score, Top Percentage and Win Score

Step 6: Show the number of reads assigned to each taxa/node - Tree →Show number of Reads Assigned

Step 7: Collapsing/expanding the tree to different taxonomic levels

-Tree → Collapse at Taxonomical Level

- choose higher level to collapse, or lower level to expand

Step 8: Changing the vertical and horizontal view of the tree

Step 9: Taxon discovery rate

- Window→Chart Taxon Discovery Rate

Step 9: Exporting and saving MEGAN output

- File→Save As
- File→Export Image

Exercise: Comparing metagenomic samples using MEGAN

- Import the BLASTX against NR file for the OMZ 20m dataset.
 Note: this should be done already
 (File name: OMZ_20m_allDNA.fna.5000VSnr.FF.b10.v10.c250.blastx)
- 2) Import the BLASTX against NR files for the OMZ 45m OR 60m dataset. (File name: OMZ_45m_allDNA.fna.5000VSnr.FF.b10.v10.c250.blastx OR OMZ_60m_allDNA.fna.5000VSnr.FF.b10.v10.c250.blastx)
- 3) Change the Min Score filter to a bitscore of 40 for each dataset.
- 4) Using the Compare tool (found under File--->Compare), select both datasets and choose the normalize over all reads option.
- 5) Collapse the resulting tree to the phylum level. Note any major differences in the representation of difference taxonomic groups.

MG-RAST

MetaGenome Rapid Annotation using Subsystems Technology

http://metagenomics.nmpdr.org/mg-rast/FIG/rast.cgi

Login: CMORE

Password: CMORE

- Accurate and consistent annotations of metagenomic data (12-24 hours)
- Currently accepts 454 and Sanger sequences
- Automatic metabolic reconstruction
- Phylogenetic classification of rRNAs and proteins
- Comparison tools

MG-RAST

Subsystem – a generalization of "pathway" as a collection of functional roles jointly involved in a biological process or complex

CAMERA

Community Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis

"The aim of this project is to serve the needs of the microbial ecology research community by creating a rich, distinctive data repository and a bioinformatics tools resource that will address many of the unique challenges of metagenomic analysis."

http://camera.calit2.net/index.php

CAMERA

Community Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis

CAMERA requires registration:

USEFUL LINKS MARINE MICRO SPECIFIC

http://camera.calit2.net/

http://www.moore.org/microgenome/

http://egg.umh.es/micromar/

http://www.megx.net/

GENERIC TOOLS AND MICROBIAL GENOME EXPLORATION

http://genome.jgi-psf.org/mic_home.htm

http://www.softberry.com/all.htm

http://www.ncbi.nih.gov/

http://img.jgi.doe.gov/cgi-bin/pub/main.cgi

RIBOSOMAL RNA DATABASE AND PROBE RESOURCES AND TOOLS

http://greengenes.lbl.gov/cgi-bin/nph-index.cgi

http://www.microbial-ecology.net/probebase/

http://www.arb-home.de/

http://rdp.cme.msu.edu/

TARGETED PROTEIN DATABASES AND SEARCH TOOLS ONLINE

http://nar.oxfordjournals.org/content/vol34/suppl 1/index.dtl

http://www.genome.jp/kegg/

http://www.ncbi.nlm.nih.gov/COG/

http://pfam.sanger.ac.uk/

http://www.ebi.ac.uk/interpro/

http://string.embl.de