Nitrogen dynamics within a wind-driven eddy

Claire Mahaffey a,*, Claudia R. Benitez-Nelson b,1, Robert R. Bidigare a,2, Yoshimi Rii a,3, David M. Karl a,4

a Department of Oceanography, University of Hawaii, Honolulu, HI 96822, USA
b Department of Geological Sciences and Marine Science Program, University of South Carolina, Columbia, SC 29208, USA

A R T I C L E I N F O

Article history:
Accepted 5 February 2008
Available online 21 May 2008

Keywords:
Nitrogen cycle
Nitrogen isotopes
Cyclonic eddies
Export production
North Pacific Ocean

A B S T R A C T

Wind-driven cyclonic eddies are hypothesized to relieve nutrient stress and enhance primary production by the upward displacement of nutrient-rich deep waters into the euphotic zone. In this study, we measured nitrate (NO3), particulate carbon (PC), particulate nitrogen (PN), their stable isotope compositions (d15N-NO3, d13C-PC and d15N-PN, respectively), and dissolved organic nitrogen (DON) within Cyclone Opal, a mature wind-driven eddy generated in the lee of the Hawaiian Islands. Sampling occurred in March 2005 as part of the multi-disciplinary E-Flux study, approximately 4–6 weeks after eddy formation. Integrated NO3 concentrations above 110 m were 4.8 times greater inside the eddy (85.8 ± 6.4 mmol N m⁻²) compared to the surrounding water column (17.8 ± 7.8 mmol N m⁻²). Using N-isotope derived estimates of NO3 assimilation, we estimated that 213 ± 59 mmol m⁻² of NO3 was initially injected into the upper 110 m Cyclone Opal formation, implying that NO3 was assimilated at a rate of 3.75 ± 0.5 mmol N m⁻² d⁻¹. This injected NO3 supported 68 ± 19% and 66 ± 9% of the phytoplankton N demand and export production, respectively. N isotope data suggest that 32 ± 6% of the initial NO3 remained unassimilated. Self-shading, inefficiency in the transfer of N from dissolved to particulate export, or depletion of a specific nutrient other than N may have led to a lack of complete NO3 assimilation. Using a salt budget approach, we estimate that dissolved organic nitrogen (DON) concentrations increased from eddy formation (3.8 ± 0.4 mmol N m⁻²) to the time of sampling (4.0 ± 0.09 mmol N m⁻²), implying that DON accumulated at rate of 0.83 ± 1.3 mmol N m⁻² d⁻¹, and accounted for 22 ± 15% of the injected NO3. Interestingly, no significant increase in suspended PN and PC, or export production was observed inside Cyclone Opal relative to the surrounding water column. A simple N budget shows that if 22 ± 15% of the injected NO3 was shunted into the DON pool, and 32 ± 6% is unassimilated, then 46 ± 16% of the injected NO3 remains undocumented. Alternative loss processes within the eddy include lateral exchange of injected NO3 along isopycnal surfaces, remineralization of PN at depth, as well as microplankton grazing. A 9-day time series within Cyclone Opal revealed a temporal depletion in d15N-PN, implying a rapid change in the N source. A change in NO3 assimilation, or a shift from NO3 fueled growth to assimilation of a 15N-deplete N source, may be responsible for such observations.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Nitrogen (N) is an essential element for the growth of all organisms. In the oligotrophic open ocean, the upward diffusive flux and coupled autotrophic assimilation of nitrate (NO3) termed “new” production (Dugdale and Goering, 1967), are typically low due to thermal stratification of the water column. Thus, phytoplankton production is mostly sustained by “regenerated” nutrients, such as ammonium (NH4) and dissolved organic nitrogen (DON) (Dugdale and Goering, 1967), or by other N sources, including biological fixation of dinitrogen (N2) and wet and dry deposition of atmospheric fixed N (Lipschultz et al., 2002). Upwelling may temporarily alleviate NO3 limitation in the surface ocean due to the uplift of nutrient-rich waters into the sunlit layer at the surface. This process may be driven by a number of physical mechanisms including fronts (Mahadevan and Archer, 2000), instability waves (Strutton et al., 2001), Rossby waves (Uz et al., 2001; Siegel, 2001), and cold-core or cyclonic eddies (Falkowski et al., 1991; McGillicuddy and Robinson, 1997;
McGillivray et al., 1998, 1999). Several studies have observed a 3–9-fold increase in euphotic zone NO$_3$ concentrations due to the passage of cyclonic eddies (Allen et al., 1996; Seki et al., 2001; Biggare et al., 2003) and Rossby waves (Sakamoto et al., 2004). These nutrient increases further resulted in substantial enhancements in primary production and plankton biomass as well as a shift in plankton community structure (Biggare et al., 2003; Sweeney et al., 2003; Vaillancourt et al., 2003; Falkowski et al., 1991; Allen et al., 1996). Therefore, cyclonic eddies also are hypothesized to increase new production and the export of carbon (C), N and other essential bio-elements from the surface to the deep ocean (McGillivray et al., 2007), however few studies have been able to quantify their impact directly.

The waters surrounding the Hawaiian archipelago in the North Pacific Ocean are largely oligotrophic. Trade winds funnel through the subaerial topography of the Hawaiian Islands, specifically Maui and Hawaii, and induce the formation of cold-core cyclonic eddies on a semi-regular basis (Patzer, 1969; Lumpkin, 1998; Chavanne et al., 2002). E-Flux was a multidisciplinary effort to understand the interaction between mesoscale eddy physics and biogeochemistry and presented an ideal opportunity to study N-biogeochemistry; the distribution of dissolved and particulate inorganic and organic N. Stable N isotopes of dissolved and particulate N were further used to understand better N assimilation and the ultimate fate of the upwelled NO$_3$.

Nitrogen exists in nature as two stable isotopes, 14N (99.63%) and 15N (0.37%), with the ratio of 15N and 14N in a sample relative to atmospheric N$_2$ expressed in the d-notation (see Section 2) with units in per mil (%) (Wada and Hattori, 1976; Wada, 1980). Two factors influence the d^{15}N of phytoplankton in the surface ocean: (1) the d^{15}N of the N source and (2) the biotic and abiotic discriminations between 15N and 14N during the transformation of N from one form to another (Mariotti et al., 1981; Sigman and Casciotti, 2001). Both N$_2$ fixation (Mariotti et al., 1981; Sigman and Casciotti, 2001) and assimilation of regenerated NH$_4$ (Mariotti et al., 1981; Sigman and Casciotti, 2001) result in 15N-depleted plankton (<2‰, Wada and Hattori, 1976; Saino and Hattori, 1987; Checkley and Miller, 1989; Carpenter et al., 1997). The d^{15}N of the bulk material, high molecular weight DON fraction, proteins (Knapp et al., 2005; Meador et al., 2007) and atmospheric NO$_3$ (Hastings et al., 2003) are partially characterized, but their assimilation by microorganisms is poorly constrained.

Eddy-induced uplift and autotrophic assimilation of NO$_3$ has the potential to alter d^{15}N signatures in the surface ocean (Waser et al., 2000; Mahaffey et al., 2004), and will depend upon the value of d^{15}N-NO$_3$ upwelled from below, the rate of NO$_3$ supply relative to assimilation, and export of 15N out of the euphotic zone. In a closed system, following a single pulsed input of NO$_3$, the d^{15}N-NO$_3$ will be close to the d^{15}N of the initial NO$_3$ source and will conform to Rayleigh fractionation kinetics (Mariotti et al., 1981; Altabet, 1996; Waser et al., 2000; Sigman and Casciotti, 2001). In an open system, where the rate of supply is greater than the rate of assimilation, the d^{15}N-NO$_3$ will be characterized by steady-state fractionation kinetics, such that the d^{15}N-NO$_3$ is equal to the d^{15}N-source minus the fractionation factor of that specific substrate (Mariotti et al., 1981; Altabet, 1996; Waser et al., 2000; Sigman and Casciotti, 2001).

The carbon isotopic composition of phytoplankton (ratio between 12C and 13C, expressed as d^{13}C-PC) reflects fractionation processes that occur during photosynthesis. The degree of discrimination is affected by several processes, including carbon dioxide (CO$_2$) concentration, cell size, growth rate and CO$_2$ supply versus demand (Rau et al., 1992; Kennedy and Robertson, 1995; Popp et al., 1999). Typical oceanic d^{13}C-PC values are approximately -22%, with 13C-enriched values being associated with CO$_2$ drawdown (Rau et al., 1992) and high growth rates (Laws et al., 1995), as well as variations in sea-surface temperature (Kennedy and Robertson, 1995). In this study, we present results from the E-Flux III cruise in March 2005 that sampled a large mesoscale cold-core cyclonic eddy, Cyclone Opal (Benitez-Nelson et al., 2007; Dickey et al., 2008). Using seawater and particulate samples collected inside and outside the mesoscale feature, we compare the vertical structure of NO$_3$, DON, particulate biomass (determined from PN and particulate carbon (PC) concentrations), as well as the d^{15}N-NO$_3$, d^{13}C-PC and d^{15}N-NO$_3$ inside and outside Cyclone Opal. Using isotope inventories and a salt budget, we estimate the magnitude of nitrate injected during eddy formation, as well as the contribution of upwelled NO$_3$ in supporting phytoplankton growth and export production. In addition, we compare NO$_3$ assimilation and DON accumulation in order to elucidate the ultimate fate of the upwelled NO$_3$ inside Cyclone Opal.

2. Methods

2.1. Field work and sample collection

Cyclone Opal appears to have formed between 2 and 18 February 2005 southwest of the Alenuihaha Channel (−20.3°N, 156.3°W) in the lee of the Hawaiian Islands. Spanning approximately 220 km in diameter (Dickey et al., 2008), Cyclone Opal was sampled repeatedly between 10 and 28 March 2005 (E-Flux III) onboard the R/V Wecoma. Data were collected from a subset of stations occupied during the field campaign and represent 12 stations at the center of Cyclone Opal (IN stations) and three control stations well outside the eddy path (OUT stations, Fig. 1 and Table 1). Not all properties were determined for each station (see Table 1). Hydrographic and bio-optical properties, as well as the history of formation and maturation of Cyclone Opal, are described in Dickey et al. (2008) and Nencioli et al. (2008). The center of Cyclone Opal was located using satellite imagery, seasurface temperature (SST), density profiles, and an acoustic Doppler current profiler (ADCP) to map upper ocean currents. Measurements made at the IN stations represent a 9-day time series, providing valuable information on the physical and biogeochemical evolution of a mature eddy (Dickey et al., 2008; Rii et al., 2008; Brown et al., 2008). To be consistent with related work, mixed-layer depth (MLD, m) was defined as the depth at which seawater temperature was 1 °C less than the temperature at 10 m (Dickey et al., 2008; Nencioli et al., 2008).

Seawater from 0 to 1000 m was collected using a CTD/rosette package equipped with 12 10-l Niskin-like bottles (Dickey et al., 2008). Samples for NO$_3$, DON and d^{15}N-NO$_3$ were collected in acid-washed 125-ml HDPE screw top bottles, frozen upright immediately after collection and stored frozen at −20 °C until analysis. For PC and PN, 12 depths were sampled between 0 and 1000 m, and 2.2 L of seawater were filtered onto a combusted (450 °C for 4 h) 25-mm diameter Whatman GF/F filter. Filters were immediately wrapped in combusted foil and frozen at −20 °C until analysis.

2.2. Total and dissolved inorganic and organic nitrogen analysis

Concentrations of nitrate (NO$_3$), technically includes nitrite (NO$_2$), NO$_2$ is generally found at nanomolar or sub-nanomolar concentrations and was not measured in this study) were determined using a Bran and Luebbe segmented flow autoanalyzer (Armstrong et al., 1967). The limit of detection for NO$_3$ analysis by this procedure was 0.1 μM with a precision, based upon triplicate analysis of samples, of <1.5%. A five-point
calibration was performed using a sodium nitrate stock standard (10 mM) spiked into aged (> 6 months) and filtered (0.2µm) low-nutrient surface seawater. Accuracy was monitored by repeat analysis of a WACO CSK seawater standard (nitrate, 40µM, #037-10241) and the coefficient of variation was typically less than 1.5%. The depth of the top of the nitricline (Znitricline, m) was determined by extrapolating the slope to zero NO3 between two depths (45 and 125 m inside and 125 and 250 m outside Cyclone Opal (Fig. 2)).

Properties include sea-surface temperature (SST, °C), mixed layer depth (MLD, m), deep chlorophyll maximum layer (DCML, m), the depth of the top of the nitricline (Z nitricline, m), integrated concentration of nitrate (mmol m⁻²), dissolved organic nitrogen (DON, mmol m⁻²), particulate nitrogen (PN, mmol m⁻²) and carbon (PC, mmol m⁻²). δ¹⁵N-PN (%) and δ¹³C-PC (%) are averaged after correction for N and C mass, respectively. Note that not all parameters were determined for each station (n.d.).

A Derived to be the depth at which seawater temperature was 1 °C less than the temperature at 10 m.
B The depth of the top of the nitricline (Z nitricline, m) was determined by extrapolating the slope to zero NO3 between two depths (45 and 125 m inside and 125 and 250 m outside Cyclone Opal (Fig. 2)).

Table 1

<table>
<thead>
<tr>
<th>Cast</th>
<th>Date sampled</th>
<th>SST (°C)</th>
<th>MLD (m)</th>
<th>DCML (m)</th>
<th>Z nitricline (m)</th>
<th>Nitrate (mmol m⁻²)</th>
<th>TDN (mmol m⁻²)</th>
<th>DON (mmol m⁻²)</th>
<th>PN (mmol m⁻²)</th>
<th>PC (mmol m⁻²)</th>
<th>δ¹⁵N-PN (%)</th>
<th>δ¹³C-PC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN_15</td>
<td>3/13/2005</td>
<td>24.80</td>
<td>97</td>
<td>120</td>
<td>61</td>
<td>35</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>25.2 ± 0.7</td>
<td>175.7 ± 41</td>
<td>5.2 ± 0.4</td>
</tr>
<tr>
<td>IN_23</td>
<td>3/14/2005</td>
<td>24.67</td>
<td>90</td>
<td>95</td>
<td>42</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>27.7 ± 1.0</td>
<td>175.4 ± 61</td>
<td>6.8 ± 0.6</td>
<td>−21.1 ± 0.3</td>
</tr>
<tr>
<td>IN_49</td>
<td>3/16/2005</td>
<td>23.62</td>
<td>67</td>
<td>75</td>
<td>94</td>
<td>55</td>
<td>32</td>
<td>n.d.</td>
<td>n.d.</td>
<td>42.7 ± 3.1</td>
<td>306.9 ± 18.0</td>
<td>2.5 ± 0.3</td>
</tr>
<tr>
<td>IN_63</td>
<td>3/17/2005</td>
<td>23.68</td>
<td>47</td>
<td>62</td>
<td>45</td>
<td>39</td>
<td>80.5 ± 4.2</td>
<td>546.9 ± 12.1</td>
<td>466.5 ± 10.5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>IN_68</td>
<td>3/18/2005</td>
<td>23.87</td>
<td>45</td>
<td>71</td>
<td>49</td>
<td>45</td>
<td>716.6 ± 6.5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>30.1 ± 1.7</td>
<td>228.2 ± 9.2</td>
<td>5.0 ± 0.8</td>
</tr>
<tr>
<td>IN_74</td>
<td>3/19/2005</td>
<td>23.82</td>
<td>57</td>
<td>75</td>
<td>48</td>
<td>42</td>
<td>816.7 ± 7.5</td>
<td>n.d.</td>
<td>n.d.</td>
<td>316.1 ± 1.3</td>
<td>256.9 ± 9.4</td>
<td>3.3 ± 0.3</td>
</tr>
<tr>
<td>OUT_11</td>
<td>3/24/2005</td>
<td>25.18</td>
<td>94</td>
<td>102</td>
<td>128</td>
<td>121</td>
<td>8.5 ± 0.2</td>
<td>467.9 ± 12.3</td>
<td>440.6 ± 11.9</td>
<td>30.4 ± 0.9</td>
<td>234.2 ± 6.9</td>
<td>2.4 ± 0.4</td>
</tr>
<tr>
<td>OUT_119</td>
<td>3/25/2005</td>
<td>25.10</td>
<td>90</td>
<td>111</td>
<td>123</td>
<td>119</td>
<td>11.6 ± 0.3</td>
<td>433.6 ± 9.9</td>
<td>415.4 ± 9.3</td>
<td>28.2 ± 1.4</td>
<td>165.4 ± 5.2</td>
<td>5.8 ± 0.3</td>
</tr>
</tbody>
</table>

Fig. 1. Map of the Hawaiian archipelago and locations of stations inside Cyclone Opal (open circles) and outside Cyclone Opal (closed squares). Map prepared using Online Map Creation software at www.aquarius.geomar.de.

Properties include sea-surface temperature (SST, °C), mixed layer depth (MLD, m), deep chlorophyll maximum layer (DCML, m), the depth of the top of the nitricline (Z nitricline, m), integrated concentration of nitrate (mmol m⁻²), dissolved organic nitrogen (DON, mmol m⁻²), particulate nitrogen (PN, mmol m⁻²) and carbon (PC, mmol m⁻²).
All samples were systematically referenced against low-nitrogen, surface and deep (2600 m) Sargasso Seawater every 6–8 samples (Hansell and Carlson, 1998). Daily reference waters were calibrated with deep certified reference materials (CRM) provided by D. Hansell (University of Miami; Hansell, 2005).

2.3. Determination of the concentration and stable isotope composition of particulate nitrogen and carbon

Filters were removed from foil wraps, dried at 60 °C overnight and then pelletized in tin foil cups. Concentrations of PN, PC and stable N and C isotope ratios (15N/14N and 13C/12C, respectively) were determined using an elemental analyzer (Carlo Erba NC2500) coupled to an isotope ratio mass spectrometer (Thermo-Finnigan Delta S). The ratio of 15N/14N in a sample relative to the 15N/14N ratio in a standard (atmospheric N2) is expressed as

$$\delta^{15}N = \left(\frac{^{15}N/^{14}N}_{\text{sample}} / \frac{^{15}N/^{14}N}_{\text{standard}} - 1 \right) \times 1000$$ \hspace{1cm} (1)

Commercially available standards (National Institute of Standards and Technology (NIST), IAEA-N1, IAEA-N2, USGS25 (ammonium sulfate) and N3 (potassium nitrate)) were used to calibrate the N2 standard and mass spectrometer. The ratio of 13C/12C relative to a standard (Vienna Peedee belemnite, VPDB) is expressed as $\delta^{13}C$, where

$$\delta^{13}C = \left(\frac{^{13}C/^{12}C}_{\text{sample}} / \frac{^{13}C/^{12}C}_{\text{standard}} - 1 \right) \times 1000$$ \hspace{1cm} (2)

Throughout each analytical run, glycine was used as the elemental (C:N molar ratio = 2.0) and isotope standard ($\delta^{15}N = 11.25 \pm 0.15\%o$, $\delta^{13}C = -35.81 \pm 0.2\%o$). PN and PC concentrations were again integrated to 110 m at both IN and OUT stations. To determine the mean $\delta^{15}N$-PN and $\delta^{13}C$-PC in the top 110 m of the water column, the ^{15}N and ^{14}N, and ^{13}C and ^{12}C of a sample were corrected for its mass of N and C, respectively.

In order to estimate the magnitude of N and C downward particle flux, as well as the $\delta^{15}N$ of sinking PN, particle interceptor traps (PIT) were deployed at 150 m inside and outside Cyclone Opal. Details regarding PIT deployment, sample processing and analysis are outlined in Rii et al. (2008).

2.4. Determination of the stable N isotope composition of nitrate

The stable N isotope composition of nitrate ($\delta^{15}N$-NO3) was determined using the “denitrifier” method originally developed by Christensen and Tiedje (1988) for freshwater and later adapted for seawater by Sigman et al. (2001) and Casciotti et al. (2002). This technique relies on the complete conversion of NO3 to nitrous oxide (N2O) by the denitrifying bacterium, Pseudomonas chlororaphis, that lacks N2O reductase, the enzyme required for the final step in denitrification (reduction of N2O to N2). Cultures of P. chlororaphis were maintained at the University of Hawaii by M. Westley and N. Walsgrove following previously described guidelines (see Sigman et al., 2001, for details).

As recommended by Sigman et al. (2001), we used a 5-fold P. chlororaphis concentrate (cell counts not determined) to sample ratio of 4:1 for samples with sufficient NO3 to obtain a final N load of 10–20 nmol. In order to determine the $\delta^{15}N$ of samples in the upper water column where nitrate concentrations are less than 1 μM, the detection limit reported by Sigman et al. (2001), we adjusted the volume of concentrate and sample (but maintained a 4:1 ratio) to obtain sufficient nitrogen for $15N2O/14N2O$ determinations. In addition, the injection loop volume was adjusted (1–5 mL) to ensure sufficient loading of N for isotope analysis. With these refinements, we were able to achieve a detection limit of 0.4 μM. Sample N2O gas was released from the sample vial by purging with helium for 8 min to fill the injection loop and 6 min to cryofocus the sample gas. The sample gas was injected into an in-house manufactured gas chromatograph through a Chrompak.
PoroPLOT Q (25 m × 0.32 mm i.d.) coupled to a MAT252 mass spectrometer. The δ^{15}N-N$_2O$ purged from the sample vial was standardized using a calibrated N$_2$O gas standard, NIST standards (IAEA-N3, potassium nitrate, δ^{15}N of 4.72‰) and a batch of seawater collected at 4000 m at station ALOHA (δ^{15}N of 5.6±0.5‰). Based upon replicate analyses of NIST and deep seawater, the accuracy and precision of the δ^{15}N-NO$_3^-$ method were ±0.3‰ and ±0.5‰, respectively.

3. Results

3.1. Hydrography, total and dissolved inorganic and organic nitrogen distributions

Cyclone Opal had distinct physical characteristics compared to surrounding waters (Table 1) (Nencioli et al., 2008). Mean sea-surface temperatures were significantly lower (by ~1 °C, p < 0.01) at IN stations due to the uplift of cold and nutrient-rich deep waters, as evidenced by the average depth of the 24.5 kg m$^{-3}$ density surface ($\sigma_T = 24.5$, 60 ± 7 m and 126 ± 2 m, respectively, Fig. 3A) and MLD (60 ± 5 m and 96 ± 4 m, respectively, Table 2). The mean deep chlorophyll maximum layer (DCML ± S.E.) was also uplifted by ~35 m at IN stations (77 ± 5 m, compared to 112 ± 6 m at OUT stations). Further details on the hydrography of Cyclone Opal are described by Dickey et al. (2008) and Nencioli et al. (2008).

During E-Flux III, NO$_3^-$ concentrations did not exceed 0.36 µM above the depth of nitricline (Z_{nitr}, see Table 1 for definition) at IN stations (41 ± 2 m), and was typically less than 0.1 µM (detection limit) above the Z_{nitr} at OUT stations (120 ± 1 m, Fig. 2 and Table 2). The integrated NO$_3^-$ inventory in the upper 110 m was almost 5-fold higher at IN (85.8 ± 6.4 mmol m$^{-2}$) versus OUT stations (17.8 ± 7.8 mmol m$^{-2}$, p < 0.01, Table 2), with the greatest increase in NO$_3^-$ concentrations observed between 75 and 110 m. Comparison of NO$_3^-$ concentration versus density (σ_T) demonstrates that the vertical distribution of NO$_3^-$ was primarily controlled by the physical uplift of isopycnals associated with Cyclone Opal (Fig. 3C). NO$_3^-$ concentration on the $\sigma_T = 24.4$ isopycnal is lower at IN stations ($\sigma_T = 24.4$ at 75 m) relative to OUT stations ($\sigma_T = 24.4$ at 150 m), reflecting biological uptake inside the eddy. Deeper in the water column ($\sigma_T = 25.0–25.2$), NO$_3^-$ concentrations were lower at IN station relative to OUT stations, implying that either there were differences in the water properties along the isopycnals, reflecting translation of the eddy from its point of origin, or that the NO$_3^-$-density relationship was not resolved by the vertical spacing between the samples at OUT stations (Fig. 3C). In contrast, NO$_3^-$ concentrations at $\sigma_T = 25.0$ were higher at IN stations relative to OUT stations. Implications of this observation are discussed further in Section 5.1.

Integrated (0–110 m) concentrations of TDN (±S.E.), (Fig. 4A, Table 2), were also significantly higher at IN stations (540±30 mmol N m$^{-2}$) versus OUT stations (448±10 mmol N m$^{-2}$, p < 0.01), with most of this increase attributed primarily to NO$_3^-$.

Indeed, integrated NO$_3^-$ concentrations accounted for 35% and 9% of TDN at IN and OUT stations, respectively. There was no significant difference in the measured integrated DON concentrations (444±18 mmol N m$^{-2}$ at IN versus 425±8 mmol N m$^{-2}$ at OUT, Table 2, Fig. 4C).

3.2. Particulate carbon and nitrogen concentrations and δ^{13}C and δ^{15}N distributions

Concentrations of PN and PC were greatest in the upper portion of the water column and decreased rapidly below 100 m (Fig. 5A and B, respectively). No discernible difference in PN concentrations versus density surface was observed between IN and OUT stations (Fig. 5C). Depth integrated (0–110 m) concentrations (±S.E.) of PN and PC were similar at IN stations (31.5±3.0 µM N and 228±25.0 µM C, respectively) relative to OUT stations (29.3±1.1 µM N and 199±34.5 µM C, Table 2). Indeed, these inventories of particulate material are similar to those at the nearby time-series site, station ALOHA, where annual averaged
depth integrated PN and PC concentrations are 41.5 ± 2.0 mmol N m⁻² and 264 ± 16 mmol C m⁻² (http://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html).

Mass-weighted mean distributions of δ¹⁵N-PN and δ¹³C-PC between 0 and 110 m were indistinguishable at IN (4.6 ± 0.8%o and -21.6 ± 0.2%o, respectively) versus OUT stations (4.1 ± 1.7%o and -22.1 ± 0.2%o, respectively, Table 2, Fig. 6). While there was a significant (p < 0.01) increase in the δ¹⁵N-PN between 110 and 200 m at IN stations (5.4–9.5%o), PN became ¹⁵N-deplete in this depth interval at OUT stations (down to 1.2%o, Fig. 6A). Below 200 m, δ¹⁵N-PN reached similar values of 6–9%o at both IN and OUT stations. Between the base of the mixed layer and 200 m, the δ¹³C-PC of particles within Cyclone Opal remained relatively constant with depth, whereas particles sampled outside Cyclone Opal became relatively depleted (23.0 ± 0.2%o). Below 200 m, the δ¹³C of particles were again similar at IN and OUT stations. There was no significant difference in the magnitude and δ¹⁵N signature of sinking particulate matter captured by sediment traps deployed at 150 m at IN (0.15 ± 0.01 mmol N m⁻² d⁻¹ and 4.5 ± 0.2%o) and OUT stations (0.16 ± 0.02 mmol N m⁻² d⁻¹ and 4.5 ± 0.4%o) (Table 2, Rii et al., 2008).

Table 2

Summary of the integrated properties (0–110 m) reported in Table 1, reported as mean ± standard error inside and outside Cyclone Opal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Inside Cyclone Opal</th>
<th>Outside Cyclone Opal</th>
<th>Inside/Out</th>
<th>Significant difference (99%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SST (°C)</td>
<td>24.0 ± 0.1</td>
<td>25.0 ± 0.1</td>
<td>0.96</td>
<td>Yes</td>
</tr>
<tr>
<td>MLD (m)</td>
<td>60 ± 5</td>
<td>96 ± 4</td>
<td>0.62</td>
<td>Yes</td>
</tr>
<tr>
<td>s_T = 24.0 (m)</td>
<td>60 ± 7</td>
<td>126 ± 2</td>
<td>0.48</td>
<td>Yes</td>
</tr>
<tr>
<td>DCML (m)</td>
<td>77 ± 5</td>
<td>112 ± 6</td>
<td>0.69</td>
<td>Yes</td>
</tr>
<tr>
<td>Z nitrate (m)</td>
<td>41 ± 2</td>
<td>120 ± 1</td>
<td>0.34</td>
<td>Yes</td>
</tr>
<tr>
<td>1% light level (m)</td>
<td>110</td>
<td>150</td>
<td>0.73</td>
<td>n.d.</td>
</tr>
<tr>
<td>Nitrate (mmol m⁻²)</td>
<td>85.8 ± 6.4</td>
<td>17.8 ± 7.8</td>
<td>4.8</td>
<td>Yes</td>
</tr>
<tr>
<td>TDN (mmol m⁻²)</td>
<td>540 ± 30</td>
<td>448 ± 30</td>
<td>1.2</td>
<td>Yes</td>
</tr>
<tr>
<td>DON (mmol m⁻²)</td>
<td>444 ± 18</td>
<td>425 ± 8</td>
<td>1.04</td>
<td>No</td>
</tr>
<tr>
<td>PN (mmol m⁻²)</td>
<td>31.5 ± 3.0</td>
<td>29.3 ± 1.1</td>
<td>1.1</td>
<td>No</td>
</tr>
<tr>
<td>PC (mmol m⁻²)</td>
<td>228 ± 25</td>
<td>198 ± 34.5</td>
<td>1.1</td>
<td>No</td>
</tr>
<tr>
<td>δ¹⁵N-PN (%o)</td>
<td>4.6 ± 0.8</td>
<td>4.1 ± 1.7</td>
<td>n.d.</td>
<td>No</td>
</tr>
<tr>
<td>δ¹⁵C-PC (%o)</td>
<td>-21.6 ± 0.2</td>
<td>-22.1 ± 0.2</td>
<td>n.d.</td>
<td>No</td>
</tr>
<tr>
<td>PN export a (mmol N m⁻³ d⁻¹)</td>
<td>0.15 ± 0.01</td>
<td>0.16 ± 0.02</td>
<td>0.94</td>
<td>No</td>
</tr>
<tr>
<td>δ¹⁵N sinking PN b (%o)</td>
<td>4.5 ± 0.2</td>
<td>4.5 ± 0.4</td>
<td>n.d.</td>
<td>No</td>
</tr>
<tr>
<td>Nitrate assimilation rate c</td>
<td>3.6 ± 1.7</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>DON accumulation rate c</td>
<td>0.83 ± 1.3</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

The ratio of properties inside and outside the eddy is reported. Significance tests were conducted at the 99% confidence level.

a Rii et al. (2008), derived using sediment traps deployed at 150 m.

b Derived using the change in NO₃⁻ concentration estimated during eddy formation and that observed during E-Flux III (see Section 4.3).

c Derived using salinity mass balance of DON inside Cyclone Opal (see Section 4.3).
Above the depth of the nitricline (41 ± 2 m at IN stations, 120 ± 1 m at OUT stations), concentrations of NO\textsubscript{3} were generally too low to determine the δ^{15}N-NO\textsubscript{3} (limit of detection, 0.4 μM). The δ^{15}N-NO\textsubscript{3} was most variable in the upper 200 m of the water column (Fig. 7A and B), and diverged significantly above the $\sigma_T = 24.5$ isopycnal at IN and OUT stations (Fig. 7C). Above the MLD (60 m) at IN stations, δ^{15}N-NO\textsubscript{3} ranged from 11.1% to 15.5%, with a mean of 12.4 ± 1.6%. Just below MLD, the δ^{15}N-NO\textsubscript{3} decreased to a minimum of 4.4% (at 75 m). At OUT stations, a minimum in δ^{15}N-NO\textsubscript{3} of 1.69% was observed at the depth of the MLD (96 m), with a gradual increase in δ^{15}N-NO\textsubscript{3} to >6% at 175 m. This sub-euphotic minimum in δ^{15}N-NO\textsubscript{3} has been
observed in other studies (Liu et al., 1996; Sutka et al., 2004; Knapp et al., 2005). Below the MLD, δ^{15}N-NO$_3$ was relatively uniform at IN (7.19 ± 0.59‰) and OUT (6.84 ± 0.39‰) stations and similar to previous δ^{15}N-NO$_3$ measurements in the upper thermocline of the Pacific Ocean (6–7‰, Cline and Kaplan, 1975; Altabet, 2001; Sutka et al., 2004; Sigman et al., 2005).

3.4. Time-series observations within Cyclone Opal

Stations within Cyclone Opal were sampled from 13 to 22 March 2005, providing a 9-day time series. From day 1 to day 4, we observed a decrease in SST (from 24.80°C to a minimum of 23.62°C, note that Cyclone Opal was not detected from satellite derived sea surface imagery), shallowing of the MLD (from 97 m to a minimum of 45 m) and a small change in Z_{NO_3} (from 35 to 45 m) (Fig. 8A, Table 1). This change in the physical structure of the water column was accompanied by a significant ($p<0.01$) increase in the 110 m integrated concentrations of PN (25.0 ± 0.7 to 42.7 ± 3.1 mmol N m$^{-2}$) and PC (175.7 ± 4.1 to 306.9 ± 18.0 mmol N m$^{-2}$) (Fig. 8B), and a significant decrease in the δ^{15}N-PN (from 5.2 ± 0.4‰ to 2.5 ± 0.3‰) (Fig. 8C). From day 4 to day 7, there was a significant ($p<0.01$) decrease in PN and PC, and an increase in the δ^{15}N-PN. The implications of these observations are discussed below (Section 5.3).

4. New, export and net community production

Eddies can enhance the NO$_3$ inventory in the euphotic zone by upwelling nutrient-rich deep waters from below, thereby enhancing growth and promoting a shift in community structure from small to large photoautotrophs (Sweeney et al., 2003; McGilli-cuddy et al., 2007). Assuming steady state, the input of new NO$_3$ into the euphotic zone should be approximately equal to the downward PN flux plus the accumulation of DON and suspended particles (Epplley and Peterson, 1979; Laws, 1991). In this section, we will attempt to (1) estimate the magnitude of the NO$_3$ pool injected during eddy formation, (2) estimate the contribution of injected NO$_3$ that supports Cyclone Opal plankton growth and particle export, and (3) estimate the rate of NO$_3$ assimilation versus DON accumulation.

4.1. Nitrate inventory inside Cyclone Opal

During E-Flux III, the NO$_3$ inventory above 110 m was 4.8 times greater at IN stations (85.8 ± 6.4 mmol N m$^{-2}$) relative to OUT stations (17.8 ± 7.8 mmol N m$^{-2}$) (Table 2), implying that there is 68 ± 10 mmol N m$^{-2}$ of excess NO$_3$ inside Cyclone Opal when sampled in March 2005. If we assume that Cyclone Opal consisted of one injection of nutrient-rich deep water rather than a continuous supply (Nencioli et al., 2008), then this residual NO$_3$ pool represents the fraction of the initially injected NO$_3$ that remained unassimilated. Here, we attempt to calculate the magnitude of NO$_3$ injected during the spin-up of Cyclone Opal.

At IN stations, we observed an 15N-enrichment (mean δ^{15}N-NO$_3$ of 12.4 ± 1.6‰) of the upper water-column NO$_3$ pool that is characteristic of isotope discrimination during NO$_3$ drawdown (Fig. 7, Altabet, 2001). We therefore used this information to estimate f, the fraction of unassimilated NO$_3$, according to Rayleigh fractionation kinetics:

$$\delta^{15}\text{N}_\text{NO}_3\text{in situ} = \delta^{15}\text{N}_\text{NO}_3\text{initial} - \epsilon(\ln f)$$

where $\delta^{15}\text{N}_\text{NO}_3\text{in situ}$ is the δ^{15}N of the NO$_3$ pool in the surface, $\delta^{15}\text{N}_\text{NO}_3\text{initial}$ is the δ^{15}N of the NO$_3$ supplied to the surface ocean (6.8‰, the δ^{15}N-NO$_3$ at 1000 m, see Section 5), ϵ is the kinetic isotope effect (5% for NO$_3$, Waser et al., 1998; Altabet, 2001) and f is the fraction of the initial NO$_3$ pool remaining in the surface ocean. Using Eq. (3), we calculate f to be 0.32 ± 0.06, implying that 68 ± 12% of the supplied NO$_3$ had been assimilated. In other words, the excess NO$_3$ inventory inside the eddy reflects 32% of the initial NO$_3$ injection. We thus estimate that the total NO$_3$ injected by Cyclone Opal by scaling the net difference between IN
or sinking particles. For example, if 100% of new and export results in 213\% of the N exported from the surface ocean (sinking particles, 4.5±0.2\%\textsubscript{0}, Table 2). Errors bars reported represent analytical errors associated analysis of \delta^{15}\text{N-PN} and \delta^{15}\text{N-NO}_3. However, variations in the \delta^{15}\text{N-NO}_3 will alter the contribution of NO\textsubscript{3} in fuelling phytoplankton growth and export (see Section 5.2).

4.3. Nitrate consumption and DON accumulation inside Cyclone Opal

Cyclone Opal was estimated to be 4–6 weeks old when sampled in March 2005. In Section 4.1, we determined the initial NO\textsubscript{3} inventory inside Cyclone Opal to be 213±59 mmol N m-2, implying that 127±59 mmol N m-2 of NO\textsubscript{3} were assimilated during the 4–6 weeks lifetime of the eddy (initial estimated versus actual measured: 213–86 mmol N m-2). Assuming that the injection of nutrient-rich deep water into the upper 110 m occurred only during the spin-up of Cyclone Opal, and assimilation of NO\textsubscript{3} by phytoplankton is constant, we estimate that NO\textsubscript{3} was consumed at a rate of 3.6±1.7 mmol N m-2 d-1. In essence, this is equivalent to nitrate-derived new production. This is double the average net community production estimated for Cyclone Opal using a salinity mass approach to derive a net community production of 1.8±0.7 mmol N m-2 d-1 (assuming a C:N ratio of 6.6, Chen et al., 2008), but they are statistically indistinguishable.

In order to determine the change in the DON inventory from the spin-up of Cyclone Opal to the time of sampling in March 2005, we need to estimate the initial DON concentration during eddy formation. Briefly, we employed a salt budget to derive the initial composition of the seawater within the photic zone of the eddy core (see Benitez-Nelson et al., 2007; Chen et al., 2008). This calculation takes into account the dilution effect created by the upward injection of lower salinity, high-NO\textsubscript{3}, lower DON waters from below. In the upper 110 m of the water column, the initial weighted average DON concentration (integrated DON concentration divided by 110 m) at IN stations was 3.78±0.40 mmol m-3. The observed weighted average DON concentration over the upper 110 m was 4.04±0.09 mmol m-3 (Table 2), implying that 0.26±0.4 mmol m-3 or 29±44 mmol m-2 of DON accumulated over the top 110 m over 4–6 weeks inside the eddy. Thus, we estimate that DON was produced at a rate of 0.83±1.3 mmol N m-2 d-1 (29 mmol m-2 divided by 28–42 days), which is not significantly different from zero when errors are considered.

5. Discussion

5.1. Distribution of nitrogen inside Cyclone Opal

Significant increases in autotrophic biomass (chlorophyll \textalpha) and a dominance of large siliceous diatoms were observed within Cyclone Opal (Benitez-Nelson et al., 2007; Brown et al., 2008; Rii et al., 2008) in response to the upwelling of nutrient-rich deep waters into the euphotic zone. Inside Cyclone Opal, there was a 4.8-fold increase in integrated NO\textsubscript{3} concentrations (85.8±6.4 mmol N m-2) in the upper 110 m relative to the surrounding water column when sampled in March 2005. We infer that during eddy formation, integrated NO\textsubscript{3} concentrations were almost 12-fold higher (213±59 mmol N m-2) than typically found in this region of the Pacific Ocean. This is similar to previous observations in Hawaii Cyclones Mikalele and Loretta, which exhibited a 3- and 15-fold increase in NO\textsubscript{3} concentrations (Seki et al., 2001). Surprisingly, however, there were no significant
differences in the integrated suspended PN and PC concentrations at IN versus OUT stations during E-Flux III. In addition, three independent techniques used to determine Cyclone Opal export production revealed no significant increase in the sinking particle flux of PN or PC (see Table 2, Rii et al., 2008; Maiti et al., 2008; Benitez-Nelson et al., 2007). Rather, Cyclone Opal acted as a selective silica pump, exporting empty diatom frustules (Benitez-Nelson et al., 2007). In fact, there was no significant difference in export production found inside Cyclone Opal relative to station ALOHA, the nearby time-series station (Benitez-Nelson et al., 2001). Therefore, we must consider the fate of NO3 injected into Cyclone Opal.

From Section 4.1, we estimate that 213 ± 59 mmol m⁻² of NO3 was injected into Cyclone Opal during its formation and was assimilated at a rate of 3.6 ± 1.7 mmol N m⁻² d⁻¹. However, 4–6 weeks after formation, 32 ± 6% of the initial NO3 injected remained unassimilated. The lack of significant suspended particle accumulation (this study) or significant sinking particle flux (Benitez-Nelson et al., 2007; Rii et al., 2008; Maiti et al., 2008), implies that the NO3 injected into Cyclone Opal potentially accumulated as some other N species. In Section 4.2, we estimated that DON was produced at a rate of 0.83 ± 1.3 mmol N m⁻² d⁻¹, with total DON accumulation of 0.26 ± 0.4 mmol N m⁻². If we compare the accumulation of DON to the pool of assimilated NO3 (127 ± 59 mmol N m⁻² divided by 110 m = 1.2 ± 0.5 mmol N m⁻²), we find that DON accounts for 22 ± 15% of the injected NO3 pool within Cyclone Opal. Thus, N mass balance reveals that, after accounting for the percentage of NO3 remaining (32 ± 6%), and that percentage of NO3 that was shunted into the DON pool (22 ± 15%), 46 ± 16% (or 98 ± 34 mmol N m⁻²) of the injected NO3 is unaccounted for. Considering that no significant particle accumulation or export was observed within Cyclone Opal, alternative sinks and loss processes must be considered.

Within Cyclone Opal, an increase in the abundance of diatoms is reported to have enhanced grazer biomass by up to 6 times compared to surrounding waters (Brown et al., 2008), reflecting a predator–prey response within the eddy. Indeed, grazing by microzooplankton was found to consume 55% of the total phytoplankton community production within Cyclone Opal (Landry et al., 2008). Considering the lack of substantial zooplankton-derived particle export at 150 m (i.e. fecal pellets), PN consumed by zooplankton may have been exported below the 150 m depth of the sediment traps by active migration. There is no evidence for accumulation of NH4 inside Cyclone Opal. Another possibility is advection or mixing. Nencioli et al. (2008) report that within Cyclone Opal, there was radial exchange between the center of the eddy and the surrounding water column along the 43°N latitude. NO3 uptake due to accumulation of phytoplankton biomass in the upper euphotic zone (i.e. self-shading), as observed during E-Flux III (Brown et al., 2008). However, it is known that some diatoms are capable of growing at near their maximal rates at irradiances characteristic of the lower euphotic zone (Goldman and McGillicuddy, 2003). Also, both indirect (physical model, Martin and Pondaven, 2003) and direct (15N incorporation, Allen et al., 1996) studies have concluded the efficiency in transferring N from NO3 to particulate export within cyclonic eddies is highly variable (10–77%). Depletion of a specific nutrient other than N inside Cyclone Opal also may have led to a lack of complete N assimilation (see Section 5.3).

As noted in Section 3.1, NO3 concentrations at 43°N (500 m) are significantly higher at IN stations relative to OUT stations. This potentially reflects remineralization at depth. For example, excess NO3 at 500 m is approximately 3 mmol m⁻³. Therefore, only a 32-m thick layer of water could account for the entire 98 ± 34 mmol m⁻² of missing N. Unfortunately, the vertical resolution of NO3 sampling was insufficient to characterize this feature in detail and there is no clear supporting evidence that remineralization occurred. Oxygen profiles over the same depth range show no significant differences in concentration between IN and OUT stations (5–5 µM O2, Nencioli et al., 2008). Excess dissolved inorganic carbon (DIC) concentrations are too noisy to resolve a ~20 µM DIC signal (Chen et al., 2007) and 234Th measurements, although coarse, give no clear indication of excess 234Th at that depth (Maiti et al., 2008).

5.2. Distribution of 15N and 13C inside Cyclone Opal

Suspended particles inside Cyclone Opal were 15N-enriched compared to typical oligotrophic waters (~2‰, Checkley and Miller, 1989), reflecting assimilation of 15N-enriched NO3 within a closed system. These observations are in concordance with studies by Waser et al. (2000) and Mahaffey et al. (2004), who hypothesized that 15N-enriched phytoplankton (~3‰) in the North Atlantic were due to assimilation of NO3 from the deep ocean that had been injected into the surface by some physical process, such as eddies or Rossby waves. According to Waser et al. (2000), changes in the rate of NO3 supply and its 15N/NO3 are the principle factors controlling variations in δ15N of suspended PN in the surface ocean. In addition, they concluded that seasonal variability in the δ15N-NO3 supplied to the surface ocean was primarily responsible for the basin scale change in δ15N-PN between spring and fall in the North Atlantic. A time-series study of δ15N-PN showed significant seasonal variation in sub-euphotic (250 m) δ15N-PN at the Bermuda Atlantic Time-series Study site (BATS) in the subtropical North Atlantic (Knapp et al., 2005), with δ15N-PN being ~3‰ during the summer months, and ~2.5% during the winter months. Unfortunately, there are no supporting or published δ15N-PN data (suspended or sinking) to examine the effect of variations in δ15N-NO3 on the δ15N of suspended or sinking material at BATS.

Between 75 and 200 m, the δ15N-NO3 differs between IN and OUT stations. Outside the eddy, NO3 was 15N-depleted (to ~1‰) relative to the δ15N-NO3 of deep water (~6.8‰). This appears to be a common feature at the base of the euphotic zone and may be due to remineralization of 15N-depleted sinking PN from N2 fixation (Liu et al., 1996), oxidation of semi-labile total organic nitrogen (TON) (Knapp et al., 2005) or nitrification. In fact, nitrification, the microbial-mediated conversion of NH4 to NO3, is a highly fractionating process (~35‰, Casciotti et al., 2003; Sutka et al., 2004) that has the potential to deplete the 15N of the NO3 produced (although this pool is likely small and short lived). In addition, nitrification also complicates our understanding of new versus regenerated nitrogen as NO3 produced through this process is essentially regenerated and may represent up to 80% of NO3 in the euphotic zone (Lipschultz et al., 2002; Martin and Pondaven, 2003, 2006). Thus, outside the path of Cyclone Opal, any of these processes may have contributed to the observed trends in δ15N-NO3. In contrast, at IN stations, δ15N-NO3 at the base of the euphotic zone was always greater than 4.4%. This implies that the rate of NO3 supply at the base of the euphotic zone was sufficient to mask the isotope effects associated with processes that act to deplete NO3 in 15N, or dilute the pool.
of \(^{15}\)N-depleted NO\(_3\). In this study, we assumed an initial and constant \(\delta^{15}\)N\(_{\text{initial}}\) of NO\(_3\) (6.8\%o, \(\delta^{15}\)N-NO\(_3\) at 1000 m) at both IN and OUT stations. However, if the \(\delta^{15}\)N-NO\(_3\) is \(<6.8\%o\), the contribution of deep NO\(_3\) to supporting new and export productivity (as estimated in Section 4.1), e.g., the \(f\)-value or the fraction of unassimilated NO\(_3\), would decrease.

In this same region of the water column (100–200 m), there was also a significant \(^{15}\)N-enrichment in suspended PN observed inside Cyclone Opal. This \(^{15}\)N-enrichment of particles in the sub-euphotic region (150–200 m) and indeed in the “twilight” zone (\(\sim200–1000\) m) inside Cyclone Opal probably reflects the loss of \(^{15}\)N-depleted proteins and nucleic acids during remineralization and ammonification of particulate matter during sinking (Altabet et al., 1986; Macko et al., 1987; Altabet, 1988). This is further supported by \(^{234}\)Th flux data of Maiti et al. (2008) who concluded that there was intense remineralization between 100 and 150 m.

During E-Flux III, the \(^{15}\)N-PN of sinking PN also was determined using material captured in sediment traps deployed at 150 m. There appears to be little difference in \(\delta^{15}\)N of sinking PN captured inside (4.5 \(\pm 0.2\)\%o) and outside (4.5 \(\pm 0.4\)\%o) Cyclone Opal (Table 2). Interestingly, the \(\delta^{15}\)N of sinking PN is similar to the \(\delta^{15}\)N of suspended PN at IN (4.6 \(\pm 0.8\)\%o) and OUT (4.1 \(\pm 1.7\)\%o) stations as well. Altabet (2001) found a similar relationship between \(\delta^{15}\)N of sinking PN and \(\delta^{15}\)N of suspended PN in the NO\(_3\)-dominated equatorial upwelling region of the tropical Pacific Ocean and interpreted this similarity as demonstrating a tight coupling between euphotic zone processes and particles at depth when NO\(_3\) is the dominant nutrient. In addition, recent evidence suggests that remineralization of diatom bound organic matter, specifically amino acids, occurs as a result of mineral rather than organic matter remineralization, implying that organic matter associated with rapidly sinking diatom frustules is preserved (Ingalls et al., 2006).

It is important to note that \(^{15}\)N-enriched suspended PN also can be generated by inclusion of higher trophic levels during sampling, which tend to be enriched by 2–3.5\%o. However, if the \(\delta^{15}\)N-NO\(_3\) at 1000 m (\(\delta^{15}\)N-PN returning to more enriched values after day 4. Therefore, these observations should be treated with caution as spatial heterogeneity cannot be dismissed.

It is interesting to note that despite an increase in particulate biomass over 4 days, sediment traps and \(^{234}\)Th-derived particle export increased only minimally, if at all (Rii et al., 2008; Maiti et al., 2008). Laws et al. (2000) suggest that above 25 °C, the export ratio, defined as the ratio of new or export production to total production, is relatively insensitive to changes in total production. Experimental manipulations of the plankton community inside Cyclone Opal resulted in a simultaneous decrease in gross primary production and community respiration 72 h after nutrient additions, implying that the system rapidly adjusts its metabolic balance to maintain steady state (McAndrew et al., 2008).

High-resolution mooring-based observations in both the Atlantic (Bermuda test-bed mooring; McNeil et al., 1999) and Pacific Oceans (HALE ALOHA; Sakamoto et al., 2004; Letelier et al., 2000) have demonstrated that there are complex temporal dynamics between the delivery of NO\(_3\) and the biological response generated by a passing cyclonic eddy. At the HALE ALOHA mooring, a 3-fold increase in NO\(_3\) concentrations (1.96 \(\pm 1.09\) to 5.48 \(\pm 0.54\) \(\mu\)mol kg\(^{-1}\)) was observed in response to a change in sea surface height, followed rapidly (\(\sim72\) h) by an increase in chlorophyll \(a\), which was sustained for up to 1 month following the increase in NO\(_3\). At the Bermuda test-bed mooring in the subtropical North Atlantic, McNeil et al. (1999) observed a rapid increase in chlorophyll \(a\) (maximum of 1.4 mg m\(^{-2}\)) 2 days after an initial NO\(_3\) injection, with enhanced biological activity maintained for the following 8 days. It is possible that prior to sampling Cyclone Opal in March 2005, the maximum NO\(_3\) loading, as well as biological response and biomass accumulation, may have already occurred, hence the relatively low suspended particulate biomass relative to surrounding waters. However, if this were correct, we may expect to see remnants in the downward particulate flux and there is no evidence of a substantial downward particle flux prior to sampling from \(^{234}\)Th and \(^{210}\)Po disequilibrium measurements (Benitez-Nelson et al., 2007; Maiti et al., 2008; Verdeny et al., 2008).

Nutrient limitation or a shift in nutrient stoichiometry may also help to explain the lack of significant PN accumulation and the contrast in \(\delta^{15}\)N signatures inside Cyclone Opal. Altabet (2001) observed no change in \(^{15}\)N distribution in the equatorial Pacific region, despite a doubling of NO\(_3\) supply and concluded that iron was limiting NO\(_3\) uptake. In this study, it has been proposed that silicic acid may have been limiting inside Cyclone Opal during the time period of observation and may have driven the community transition from diatoms to other plankton assemblages, such as Prochlorococcus spp. (Benitez-Nelson et al., 2007; Brown et al., 2008). In addition, the N:P ratio of the underlying nutrient pool is \(<12\) in the upper 200 m, and \(<14\) at 1000 m (Rii et al., 2008), suggesting that if plankton were assimilating phosphate and NO\(_3\)
at Redfield proportions (16:1; Redfield, 1958), NO$_3$ would be depleted before phosphate, leaving an excess phosphate pool. This scenario is thought to promote N$_2$ fixation at station ALOHA (Karl et al., 2008) and across much of the eastern Pacific (Deutsch et al., 2007).

Although we attempt to classify Cyclone Opal as a closed system with respect to N isotope discrimination, it is likely that eddies are open systems during formation but possibly vertically segregated throughout their lifetime (Chen et al., 2008; Nencioli et al., 2008). An early study on Hawaiian lee eddies by Patzert (1969) concluded that within a cyclonic eddy, upwelling occurs during the formation stage only and despite a significant upward vertical velocity (10^{-2} cm s$^{-1}$), nutrient enrichment is confined to deeper layers of the water column (unless there is outcropping at the surface). Nencioli et al. (2008) described Cyclone Opal as a shallow, open-bottom and horizontally leaky eddy, with only a small (50 km in diameter) and relatively shallow (to a depth of 70 m) isolated region. Such exchange or connectivity of Cyclone Opal with the surrounding and underlying water column may potentially facilitate lateral net losses of NO$_3$ and DON, thus serving to close the N budget within Cyclone Opal. However, such connectivity may also potentially drive additional inputs of NO$_3$ after the formation of the eddy, which would affect not only the biogeochemistry within Cyclone Opal (e.g. by enhancing or suppressing a phytoplankton bloom), but also N isotope distribution. If the upper 70 m of the eddy received multiple sporadic injections of NO$_3$ from the deep ocean during its lifetime, and the rate of supply was significantly greater than the rate of autotrophic assimilation, we would expect the observed δ^{15}N-NO$_3$ in the upper water column to be closer to that of the deep ocean (6.8%). However, significant 15N-enrichment (up to 15.5%) of δ^{15}N-NO$_3$ in the upper 65 m within Cyclone Opal suggests that autotrophic assimilation of NO$_3$ was high relative to NO$_3$ supply during E-Flux III, implying that the upper water column was relatively isolated.

6. Summary and conclusions

Cyclone Opal was a physically mature eddy (4–6 weeks old) when sampled in Spring 2005. The total estimated injection of NO$_3$ (213 ± 59 mmol N m$^{-2}$) was 12 times higher than typically found in this oligotrophic region of the North Pacific subtropical gyre. However, particulate biomass and N isotope compositions were not significantly different when compared to surrounding waters. Estimates of N and C export production inside Cyclone Opal were similar to the particle flux in the surrounding waters (Benitez-Nelson et al., 2007; Maiti et al., 2008; Rii et al., 2008). Rapid remineralization of PN within the lower water column (100–150 m) may explain these observations, as implied by other studies within the E-Flux project (Rii et al., 2008; Maiti et al., 2008). A comparison of NO$_3$ assimilation and DON accumulation derived in this study implies that 22\% of the injected NO$_3$ accumulates in the DON pool. Indeed, Chen et al. (2008) reported that 87% of organic carbon generated within Cyclone Opal accumulated as dissolved organic carbon (DOC) rather than PC. If we assume that 32\% of the NO$_3$ that was injected remained unassimilated and DON accounted of 22\% of the injected NO$_3$, then 46\% of the NO$_3$ injected remains undocumented. The large errors associated with the multiple techniques used to estimate the NO$_3$ inventory, as well as rates of change of N pools may permit closure of the N budget within Cyclone Opal. In addition, excess NO$_3$ at 500 m may be indicative of deep remineralization and is sufficient to close the N budget inside the eddy, although there are no supporting data to suggest that remineralization at this depth occurred. Alternatively, lateral transfer of NO$_3$ and DON, as well as grazing by microzooplankton may contribute to N mass balance.

This study has provided an intriguing glimpse into how cold-core cyclonic eddies may influence the biogeochemical cycling of N. Yet much more could be learned. In order to understand these complex features, a time-series study tracking the spin up, maturation and degradation of a single eddy would be required in order to appreciate fully their global importance on the N biogeochemistry of oligotrophic systems. In addition, large-scale experiments replicating the injection of sub-surface waters may help us to understand the threshold in nutrients required to initiate a response in the plankton community and a shift in speciation, as well as the temporal dynamics and partitioning of 15N in both the dissolved and particulate pools.

Acknowledgments

We are grateful to the captain and crew of the R/V We coma for assistance during the E-Flux III cruise. The authors thank Craig Carlson for supplying TDN data. CM thanks the scientists who participated in the E-Flux III cruise for collection of samples, Terri Rust, Marian Westley, Natalie Walsgrove and Brian Popp for assistance in the IRMS laboratory at the University of Hawaii, and Karin Björkman for helpful discussion during the preparation of this manuscript. CM also acknowledges funding from the National Science Foundation and the Gordon and Betty Moore Foundation to DMK. The E-Flux project was supported by NSF Grant OCE-0241645 to CBDM.

References

Redfield, A.C., 1958. The biological control of chemical factors in the environment. American Scientist 46, 205–222.

