13 Phosphorus Cycle in Seawater: Dissolved and Particulate Pool Inventories and Selected Phosphorus Fluxes

DM Karl and KM Björkman
Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, HI 96822, USA

 CONTENTS

General introduction
Detection of phosphorus and P-containing compounds in seawater
High-sensitivity, high-specificity assay for Pi and measurements of TDP
Particulate phosphorus
Pi uptake/regeneration and DOP production/utilization rates
Intracellular ATP pool turnover and biologically available P

★★★★★ GENERAL INTRODUCTION

Phosphorus (P) is an essential macronutrient for all living organisms; life is truly built around P (deDuve, 1991). In the sea, P exists in both dissolved and particulate pools with inorganic as well as organic origins. The uptake, remineralization/hydrolysis and exchanges (by both physical and biological processes) of these various pools are the essential components of the marine P cycle (Figure 13.1). Compared to the much more extensive investigations of carbon (C) and nitrogen (N) dynamics in the sea, P pool inventories and fluxes are less well documented although no less important.

Herein, we present the principle and stepwise procedures for the accurate estimation of (1) dissolved orthophosphate (HPO$_4^{2-}$; hereafter referred to as Pi), soluble reactive P (SRP), total dissolved P (TDP) and particulate P (PP) as minimal constraints on P pool inventories, (2) dissolved and particulate adenosine-5'-triphosphate concentrations (D-ATP and P-ATP, respectively), (3) Pi uptake/regeneration and dissolved organic P (DOP) production rates using radiolabeled Pi (32P or 33P) precursors and (4) turnover rate estimation of the α-P and γ-P of intracellular ATP. The latter
Figure 13.1. Schematic representation of the open ocean P-cycle showing the various sources and sinks of inorganic and organic P pools, including biotic and abiotic interconversions. The large rectangle in the center represents the upper water column TDP pool comprised of Pi, inorganic polyphosphate and a broad spectrum of largely uncharacterized DOP. Ectoenzymatic activity (Ecto) is critical for microbial assimilation of selected TDP compounds. Particulate P, which includes all viable microorganisms, sustains the P-cycle by assimilating and regenerating Pi, producing and hydrolyzing selected non-Pi P, especially DOP compounds, and by supporting net particulate matter production and export. Atmospheric deposition, horizontal transport and the upward flux of low density organic P compounds are generally poorly constrained processes in most marine habitats. Phosphine (PH₃), shown at the right, is the most reduced form of P in the biosphere and is generally negligible except under very unusual, highly reduced conditions.
measurements provide information on microbial growth rate, total energy flux and the biologically available P (BAP) pool. While this by no means represents a comprehensive investigation of P cycle processes (see Table 13.1), these methods collectively provide a protocol suite that is suitable for an initial study of P dynamics in selected marine habitats.

******** DETECTION OF PHOSPHORUS AND P-CONTAINING COMPOUNDS IN SEAWATER

The analysis of dissolved and particulate P-containing compounds in seawater is neither simple nor straightforward. Strickland and Parsons (1972) defined eight different operational classes of P compounds based on reactivity with the acidic molybdate reagents, ease of hydrolysis and particle size. These range from ‘inorganic, soluble and reactive,’ presumably Pi, through ‘enzyme hydrolyzable phosphate’ (Pi released following treatment with the enzyme alkaline phosphomonoesterase), to ‘inorganic, particulate and unreactive’ (presumably P-containing minerals). Some of the operationally-defined pools have no convenient analytical method of determination while others can be estimated only as the difference between two operational classes with partially overlapping specificity. Only a very few specific compounds or compound classes can be readily detected at the low concentrations typically found in seawater (Table 13.1).

There is likely to be a broad spectrum of P-containing compounds in seawater. Our inability to completely characterize these various dissolved and particulate pools currently limits further progress towards a comprehensive understanding of the marine P cycle. Even the most routine analytical method employed for Pi concentration measurement in seawater fails to provide an accurate estimate, especially for habitats where the DOP pool exceeds the dissolved inorganic P pool (e.g., most subtropical and tropical surface waters).

Quantitative analyses of P in seawater have traditionally relied upon the formation of a 12-molybdophosphoric acid (12-MPA) complex and its subsequent reduction to yield a highly colored blue solution, the extinction of which is measured by absorption spectrophotometry (Fiske and Subbarow, 1925; Murphy and Riley, 1962). Over the years, numerous improvements have been introduced to the basic method so that substantial variability now exists in the conditions used for color development, final reduction of the 12-MPA complex, and the treatment of potentially interfering compounds.

Although the stepwise chemical procedures for P determination are straightforward and fully amenable to automated analysis, there are many complexities, both analytical and conceptual, inherent in measuring and interpreting P concentrations in seawater (Tarapchak, 1983). For example, the soluble reactive P (SRP) pool measured by the standard Murphy–Riley procedure is not necessarily equivalent to the concentration of Pi, but may also include DOP compounds that are hydrolyzed.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method and comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventories: dissolved pools (nmol P P°)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP (standard)</td>
<td>Molybdenum blue spectrophotometry</td>
<td>Murphy and Riley, 1962</td>
</tr>
<tr>
<td>SRP (6 sec assay)</td>
<td>Low acidity, rapid molybdenum blue color development; minimal hydrolysis of DOP</td>
<td>Chamberlain and Shapiro, 1969</td>
</tr>
<tr>
<td>SRP (extraction)</td>
<td>Isobutanol extraction of molybdenum blue dye to enhance assay sensitivity</td>
<td>Stephens, 1963</td>
</tr>
<tr>
<td>SRP (malachite green)</td>
<td>Use of the dye malachite green oxalate to enhance sensitivity</td>
<td>Fernández et al., 1985</td>
</tr>
<tr>
<td>SRP (long path length)</td>
<td>Use of long capillary cell detector for high sensitivity (± nm) Pi detection</td>
<td>Ormaza-González and Statham, 1991</td>
</tr>
<tr>
<td>Pi (MAGIC)</td>
<td>MAGIC/molybdenum blue spectrophotometry; high sensitivity, high specificity</td>
<td>Karl and Tien, 1992;</td>
</tr>
<tr>
<td>Pi (enzymatic)</td>
<td>Measurement of competitive inhibition of E. coli alkaline phosphatase by ambient Pi</td>
<td>Thomson-Buildis and Karl, 1998</td>
</tr>
<tr>
<td>ATP and GTP</td>
<td>MAGIC/firefly bioluminescence</td>
<td>Björkman and Karl, 2000</td>
</tr>
<tr>
<td>ATP</td>
<td>Charcoal binding-elution/firefly bioluminescence</td>
<td>Azam and Hodson, 1977</td>
</tr>
<tr>
<td>c-AMP</td>
<td>Charcoal binding-elution, radioimmuno-assay; seawater and sediments</td>
<td>Ammerman and Azam, 1981</td>
</tr>
<tr>
<td>Vitamin B₁₂</td>
<td>"CO₂ uptake rate by a B₁₂-starved culture of Cyclotella nana</td>
<td>Carlucci and Silbernagel, 1966</td>
</tr>
<tr>
<td>DNA</td>
<td>Ethanol precipitation/Hoechst-33258 fluorometry</td>
<td>DeFlaun et al., 1986</td>
</tr>
<tr>
<td>DNA and RNA</td>
<td>CTAB precipitation/dye binding</td>
<td>Karl and Bailiff, 1989</td>
</tr>
<tr>
<td>Phosphomonoesters</td>
<td>Pi concentration increase following incubation with alkaline phosphatase</td>
<td>Franck, 1984</td>
</tr>
<tr>
<td>Phosphomonoesters</td>
<td>Selective low-pressure (110 W) UV-photodecomposition followed by Pi (MAGIC)</td>
<td>Karl and Yanagi, 1997</td>
</tr>
<tr>
<td>Alkaline phosphatase-hydrolyzable P</td>
<td>Automated analysis by enzymatic flow injection using immobilized E. coli alkaline phosphatase, measurement of Pi</td>
<td>Shan et al., 1994</td>
</tr>
<tr>
<td>Inorganic and organic polyphosphate</td>
<td>TDP difference between UV photo-oxidation (which does not recover polyphosphates) and acid digestion methods</td>
<td>Solórzano and Strickland, 1968</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Phosphonates</td>
<td>Tangential flow concentration/3P-NMR</td>
<td>Clark et al., 1999</td>
</tr>
<tr>
<td>Phosphonates</td>
<td>Combined enzymatic-acid hydrolysis and a separate nitrate oxidation treatment; phosphonate-P is determined by difference</td>
<td>Cembella and Antia, 1986</td>
</tr>
<tr>
<td>BAP (Rigler)</td>
<td>Measure uptake rate of simultaneous additions of 98Pi and 18Pi by selected algae under near in situ conditions, followed by kinetic analysis of the data to provide an upper constraint on BAP</td>
<td>Rigler, 1966; Brown et al., 1978 and, especially, Tarapchak and Herche, 1988</td>
</tr>
<tr>
<td>BAP (bioassay)</td>
<td>Use of P-starved algal growth to estimate total bioavailable P</td>
<td>Chamberlain and Shapiro, 1969</td>
</tr>
<tr>
<td>BAP (ATP labeling)</td>
<td>Addition of 98Pi (18Pi) and determination of 32Pi (18Pi)/31P of ATP at isotopic equilibration to estimate total bioavailable P</td>
<td>Karl and Bossard, 1985b</td>
</tr>
<tr>
<td>Non-Pi phosphorus</td>
<td>Pre-treatment of water sample to remove Pi; persulfate oxidation of non-Pi compounds to Pi followed by MAGIC</td>
<td>Thomson-Bulldis and Karl, 1998</td>
</tr>
<tr>
<td>TDP (persulfate)</td>
<td>Autoclave, acid-persulfate treatment of water sample, measure Pi; this method does not quantitatively recover phosphonates</td>
<td>Menzel and Corwin, 1965</td>
</tr>
<tr>
<td>TDP (UV)</td>
<td>UV-H$_2$O$_2$ assisted photo-oxidation of combined P, measure Pi; this method does not quantitatively recover polyphosphates or selected phosphonates</td>
<td>Armstrong et al., 1966</td>
</tr>
<tr>
<td>TDP (UV + persulfate)</td>
<td>Sequential UV and persulfate (see above) treatments</td>
<td>Ridal and Moore, 1990</td>
</tr>
<tr>
<td>TDP (MgSO$_4$)</td>
<td>Mix seawater sample with MgSO$_4$, evaporate to dryness, react at 450-500°C for 2 h, add HCl, heat at 80°C, measure Pi</td>
<td>Solórzano and Sharp, 1980</td>
</tr>
</tbody>
</table>
Table 13.1 continued

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Method and comments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDP (nitrate oxidation)</td>
<td>Mix seawater sample with Mg(NO₃)₂, evaporate to dryness under high temperature, add HCl and heat at 60°C, measure Pi; of the TDP methods available, this is the most efficient for the hydrolysis of recalcitrant compounds such as phosphonates and polyphosphates</td>
<td>Cembella et al., 1986</td>
</tr>
<tr>
<td>Inventories: particulate pools (nmol P m⁻²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATP, ADP, AMP</td>
<td>Tris buffer extraction of cells, firefly bioluminescence; enzymatic phosphorylation of ADP and AMP to ATP, firefly bioluminescence</td>
<td>Karl and Holm-Hansen, 1978</td>
</tr>
<tr>
<td>GTP, GDP, GMP</td>
<td>Tris buffer extraction of cells, firefly bioluminescence; enzymatic phosphorylation of GDP and GMP to GTP, firefly bioluminescence</td>
<td>Karl, 1978a,b</td>
</tr>
<tr>
<td>DNA</td>
<td>Collect particulate matter, react with 3,5-diaminobenzoic acid (DABA), measure fluorescence (many other fluorescent dyes can also be used including DAPI and Hoechst-33258)</td>
<td>Holm-Hansen et al., 1968</td>
</tr>
<tr>
<td>RNA</td>
<td>Collect particulate matter, purify RNA fraction by chemical extraction procedures, react with orcinol, measure via spectrophotometry</td>
<td>Lin and Schjeide, 1969</td>
</tr>
<tr>
<td>Total nucleic acid</td>
<td>Chemical extraction and partial purification of RNA and DNA from particulate matter, followed by detection using ethidium bromide-induced fluorescence</td>
<td>Sakano and Kamatani, 1992</td>
</tr>
<tr>
<td>(double stranded)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphonates</td>
<td>NaOH extraction, solid-state, Magic-angle spinning ³¹P nuclear magnetic resonance (MAS-NMR); applied to marine sediments</td>
<td>Ingall et al., 1990</td>
</tr>
<tr>
<td>Phospholipid</td>
<td>Chloroform-meohanol lipid extraction, acid hydrolysis, measure Pi</td>
<td>White et al., 1979; Findlay et al., 1989</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Inositol isomers</td>
<td>Gas chromatographic – mass spectrometric analysis; applied to marine sediments</td>
<td>White and Miller, 1976</td>
</tr>
<tr>
<td>Acid soluble organic-P, phospholipids, oligopolyanions and RNA-P</td>
<td>Sequential extraction/separation of total P into compound classes; measure Pi in isolated compound classes</td>
<td>Correll, 1965</td>
</tr>
<tr>
<td>Total P</td>
<td>Collect particulate matter, combust 450°C, add HCl, heat at 60°C, measure Pi</td>
<td>Karl et al., 1991</td>
</tr>
<tr>
<td>Total P</td>
<td>Collect particulate matter onto a GF/F filter, add MgSO₄, react at 450–500°C for 2 h, add HCl, heat at 80°C, measure Pi</td>
<td>Solórzano and Sharp, 1980</td>
</tr>
</tbody>
</table>

Physiological potentials (nmol P or µg substrate 1⁻ h⁻¹)

<table>
<thead>
<tr>
<th>Alkaline phosphatase activity (EC 3.1.3.1)</th>
<th>Hydrolysis of glycerol-P and measurement Pi released</th>
<th>Taga and Kobori, 1978</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase activity (EC 3.1.3.1)</td>
<td>Hydrolysis of P-nitrophenyl phosphate and measurement of nitrophenol released</td>
<td>Kuenzler and Perras, 1965</td>
</tr>
<tr>
<td>Alkaline phosphatase activity (EC 3.1.3.1)</td>
<td>Hydrolysis of non-fluorescent methyllumbiferyl phosphate (MUF) to highly fluorescent MUF</td>
<td>Hoppe, 1993</td>
</tr>
<tr>
<td>Alkaline phosphatase activity (EC 3.1.3.1)</td>
<td>Hydrolysis of non-fluorescent 5-0 methyl fluorescein phosphate to highly fluorescent derivative</td>
<td>Perry, 1972</td>
</tr>
<tr>
<td>5'-Nucleotidase activity (EC 3.1.3.5)</td>
<td>Timed release of ³²P from exogenous [γ-³²P]-ATP</td>
<td>Ammerman and Azam, 1985</td>
</tr>
<tr>
<td>Deoxyribonuclease activity (EC 3.1.4.5)</td>
<td>Measurement of deoxyribose production rate, by DABA-induced fluorescence, following addition of DNA to sample preparation (analogous technique can also be used for RNase activity)</td>
<td>Maeda and Taga, 1973</td>
</tr>
<tr>
<td>Substrate bioavailability</td>
<td>³²P uptake rates in presence and absence of test compound, relative to equimolar additions of ³²P</td>
<td>Björkman and Karl, 1994</td>
</tr>
<tr>
<td>Parameter</td>
<td>Method and comments</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Fluxes (dissolved and particulate)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pi uptake/regeneration</td>
<td>32Pi (33Pi) addition, in situ incubation and timed measurements of specific radioactivity (radioactivity/mass)</td>
<td>Harrison, 1988</td>
</tr>
<tr>
<td>D-DNA production</td>
<td>Bacterial [H]-thymidine incorporation into D-DNA</td>
<td>Paul et al., 1987</td>
</tr>
<tr>
<td>D-DNA uptake</td>
<td>Addition of [H]-DNA (E. coli) to seawater, follow fate</td>
<td>Paul et al., 1987</td>
</tr>
<tr>
<td>DOP production and turnover</td>
<td>32Pi (33Pi) addition, in situ incubation, measurement of initial specific radioactivity and post-incubation isolation of DO32P (DO33P) from precursor 32Pi (P33Pi)</td>
<td>Orrett and Karl, 1987; Björkman et al., 2000</td>
</tr>
<tr>
<td>Dissolved P regeneration rate</td>
<td>Pulsed 32Pi (or 33Pi) uptake followed by 32Pi chase and measurement of post-chase accumulation rate of dissolved 32P (or 33P)</td>
<td>Hudson and Taylor, 1996</td>
</tr>
<tr>
<td>P-DNA production (bacterial)</td>
<td>[H]-thymidine incorporation into purified DNA</td>
<td>Fuhrman and Azam, 1980</td>
</tr>
<tr>
<td>P-RNA/P-DNA production (microbial)</td>
<td>[H]-adenine incorporation into purified RNA and DNA fractions, determination of mass flux from precursor specific radioactivity estimation</td>
<td>Karl, 1981</td>
</tr>
<tr>
<td>P-RNA/P-DNA production (microbial)</td>
<td>As above for [H]-adenine incorporation, except using 32Pi (33Pi) radiotracers</td>
<td>Karl and Bossard, 1985b</td>
</tr>
<tr>
<td>Phospholipid synthesis</td>
<td>Incubate sample with 32Pi (or 33Pi), isolate phospholipid fraction, radioassay</td>
<td>White et al., 1977</td>
</tr>
<tr>
<td>Growth rate and energy flux (ATP turnover)</td>
<td>Time course incubation of water sample with 32Pi (or 33Pi), extract and purify 32P-ATP, measure α-P and γ-P specific radioactivity of ATP pool</td>
<td>Karl, 1993</td>
</tr>
<tr>
<td>PP export</td>
<td>Sediment trap particulate matter collections, measurement of total P</td>
<td>Knauer et al., 1979; Karl et al., 1996</td>
</tr>
</tbody>
</table>

1 Abbreviations: SRP — soluble reactive P; Pi — orthophosphate ion; DOP — dissolved organic P; TDP — total dissolved P; BAP — biologically available P; MAGIC — magnesium-induced coprecipitation; ATP — adenosine-5'-triphosphate; GTP — guanosine-5'-triphosphate; c-AMP — 3',5' cyclic adenosine monophosphate; DNA — deoxyribonucleic acid; RNA — ribonucleic acid; NMR — nuclear magnetic resonance; UV — ultraviolet light
under the acidic reaction conditions. Significant differences between SRP and Pi have been observed for nearly every natural aquatic ecosystem where more rigorous and specific methods of Pi analysis have been employed (Kuenzler and Ketchum, 1962; Jones and Spencer, 1963; Rigler, 1968; Pettersson, 1979; Karl and Tien, 1997; Thomson-Bulldis and Karl, 1998), and even different SRP methods return unequal estimates of Pi when employed with common seawater samples (Karl and Tien, 1997). As discussed below, accurate determination of Pi is absolutely essential for the application of 32Pi or 33Pi tracer studies if mass flux estimation (Pi uptake or Pi regeneration rates) is the experimental objective.

Most investigators measure both SRP and TDP; the latter is also quantified by the molybdenum blue reaction following hydrolysis (Table 13.1). Only the nitrate oxidation method provides a quantitative recovery of total P, including polyphosphates and phosphonates (Cembella et al., 1986). Monaghan and Ruttenberg (1999) have recently re-evaluated the efficacy of several methods for TDP estimation in coastal waters, and recommend the Solórzano and Sharp (1980) procedure. It is conceivable, even likely, that the behavior of these various methods is site-specific and that the efficiency of soluble non-reactive P (SNP) hydrolysis to SRP is dependent upon the chemical composition of the P pool in a given habitat.

********** HIGH-SENSITIVITY, HIGH-SPECIFICITY ASSAY FOR Pi AND MEASUREMENTS OF TDP

Principle

In most oligotrophic oceanic environments, Pi determinations are unreliable because the ambient concentrations approach the limit of analytical detection (~20–40 nM) for the standard Murphy–Riley method. At these low concentrations, the variability of replicate determinations can be ±25%, or greater. Consequently, several modifications and new analytical procedures have been introduced to improve the detection limit and precision of environmental Pi analyses (Table 13.1).

The magnesium-induced coprecipitation (MAGIC) method for the precise determination of Pi, described by Karl and colleagues (Karl and Tien, 1992; Thomson-Bulldis and Karl, 1998) can be used to eliminate interference from non-Pi, P-containing compounds thereby providing a more accurate estimate of Pi that is necessary for reliable P-cycle flux determinations (Table 13.1). The method relies on the quantitative removal of P from solution by in vitro formation of brucite [Mg(OH)]2, initiated by the addition of NaOH. The precipitate is collected by centrifugation and dissolved in HCl for Pi determination by the standard Murphy–Riley molybdenum blue reaction. This MAGIC procedure can be used to routinely effect a Pi pre-concentration ranging from 2–100-fold, thereby providing a method which can reliably detect subnanomolar concentrations in seawater. The method is highly reproducible; typical estimates of precision for triplicate SRP determinations in the 10–100 nM
range are from 1 to 3%. The method is versatile and has many potential ecological applications.

Pi Determination by the modified MAGIC technique

Equipment and reagents

- Acid cleaned high-density polyethylene (HDPE) sampling bottles
- Polypropylene centrifuge tubes, 50 ml (Corning)
- Plastic 50 ml pipettes for sample dispensing
- Automatic pipettes or repipetter for reagent dispensing
- Centrifuge with capacity to hold 50 ml tubes
- Spectrophotometer, Beckman DU 640, or equivalent, and cuvette cells (10 cm)
- Sodium hydroxide 1 M (NaOH, Fluka Biochemica #71689)
- Hydrochloric acid 0.1 M (Fisher trace metal grade HCl #A508-212)
- Arsenate reducing mixture:
 1. Sulfuric acid 3.5 N (H₂SO₄, Fisher #A300-212)
 2. Sodium metabisulfite 14% w/v (Na₂S₂O₅, Fluka Biochemica #71930)
 3. Sodiuthiosulfate 1.4% w/v (Na₂S₂O₃, Fluka Biochemica #72049)
 All solutions are made up in distilled, deionized water (DDW). Sodium metabisulfite must be freshly prepared. Mix reagents 1 and 2, add 3 in the volumetric proportions 2:4:4.
- Primary standard potassium phosphate (KH₂PO₄); prepare dilution series 0.015-0.5 μM, including blank
- Certified reference material (CSK-nutrient element, Wako Chemicals #27874099)
- Molybdenum blue reaction mixture:
 1. Sulfuric acid 5 N (H₂SO₄, Fisher #A300-212)
 2. Ammonium molybdate 30% w/v ((NH₄)₆Mo₇O₂₄ • 4H₂O, Fisher #A674-500)
 3. Ascorbic acid 5.4% w/v (Fisher #A61-100)
 4. Potassium antimonyl tartrate 0.136% w/v (K₂SbC₄H₄O₇ • 0.5 H₂O, Mallinckrodt #2388)
 All solutions are made up in DDW. Ascorbic acid must be freshly prepared, or store frozen prior to use. All other solutions are stable for months, or longer. Mix reagents 1 and 2, add 3 and 4 in the volumetric proportions 5:2:2:1.

Assay

1. The stored, frozen samples are thawed in a water bath to room temperature.
2. Triplicate 50 ml sample aliquots are placed into new 50 ml polypropylene centrifuge tubes using a 50 ml plastic pipette. Work from anticipated low to high concentrations (i.e. from surface to deep) or thoroughly rinse pipette in distilled water between samples.
3. Add 150 μl 1 M NaOH to each 50 ml aliquot (0.3%, v/v).
4. Cap tubes tightly, and invert to mix the floc produced by the NaOH addition.
5. Centrifuge at 1000g at room temperature for 60 min.
6. Aspirate the supernatant using a clean Pasteur pipette attached to a vacuum line and collection flask. Take care not to disturb the small pellet.
7. For a routine five-fold sample concentration, add 10 ml of 0.01 M HCl to each tube and vortex to dissolve the pellet. Greater concentration factors up to and exceeding 100-fold can be effected by decreasing the final volume of HCl, by increasing the initial seawater volume, by increasing the acidity of the HCl, or all three.
8. Add 1 ml reduction mix to each 10 ml sample. Vortex and allow to react for 15±1 min.
9. After 15±1 min add 1 ml molybdenum blue reaction mix to each 10 ml sample and vortex to mix. Wait at least 15 min at room temperature to ensure full color development.

Note: Standards are prepared in surface seawater and treated the same as the samples. Blank samples are prepared from phosphate-free seawater (i.e. supernatant from MAGIC treated samples). Samples and standards are read at 880 nm in a 10 cm cell.

Optional: Tracer addition of 32Pi (or 33Pi) added to the original sample prior to NaOH addition can be used to precisely determine the recovery of Pi for each subsample. While this is not necessary for routine use, it does provide the most accurate and precise estimation of Pi.

The measurement of TDP is also operationally-defined; typically a high-intensity UV photooxidation (Armstrong et al., 1966) or high-temperature wet persulfate oxidation (Menzel and Corwin, 1965) or a combined procedure (Ridal and Moore, 1996) pretreatment is used to convert SNP to Pi for subsequent analysis by the standard molybdenum blue assay. However, it is well known that certain P-containing compounds (e.g. inorganic polyphosphates, nucleotide di- and triphosphates) are not quantitatively recovered by standard UV photooxidation procedures; neither method quantitatively recovers P from phosphate compounds. Depending upon the methods used, the difference between the measurement of TDP and either Pi or SRP will be termed SNP (i.e. SNP = [TDP]-[SRP]) or non-Pi P (N-Pi P = [TDP]-[Pi]), where SNP ≠ non-Pi P (Thomson-Buddis and Karl, 1998). Furthermore, the MAGIC technique provides the opportunity for a direct rather than an indirect measurement of SNP (technically, non-Pi P) by an initial quantitative removal of Pi, followed by sample hydrolysis-oxidation and Pi determination (Thomson-Buddis and Karl, 1998). This is especially useful for measure-
ments of non-PiP in waters where Pi is the dominant form, for example in the deep sea. As emphasized previously, there is no a priori relationship between these operationally-defined pools and the more ecologically-relevant BAP pool.

TDP determination by persulfate oxidation and MAGIC

Equipment and reagents

- Acid-cleaned high-density polyethylene (HDPE) sampling bottles
- Acid-cleaned autoclavable glass centrifuge tubes 50 ml with Teflon lined caps (Kimble)
- Plastic 50 ml pipettes for sample dispensing
- Automatic pipettes or repipette for reagent dispensing
- Centrifuge with capacity to hold 50 ml tubes
- Autoclave
- Sodium hydroxide 1 M (NaOH, Fluka Biochemica #71689)
- Hydrochloric acid 0.1 M (Fisher trace metal grade HCl #A508-212)
- Potassium persulfate 5% w/v (K₂S₂O₈, Fisher #P281)
- Primary standard potassium phosphate (KH₂PO₄); prepare dilution series 0.015–0.5 μM, including blank
- Spectrophotometer Beckman DU 640, or equivalent, and cuvette cells (10 cm)
- Certified reference material, arsenate reducing mixture and molybdenum blue reagents (all as above)

Assay

1. The stored, frozen samples are thawed in a water bath to room temperature. Typically, subsamples for TDP analysis are processed along with Pi determinations (see above).
2. Triplicate 40 ml sample aliquots are placed into 50 ml acid-washed glass centrifuge tubes using a 50 ml plastic pipette. Work from anticipated low to high concentrations (i.e. from surface to deep).
3. Add 6.4 ml potassium persulfate solution to each tube. Cap tightly.
4. Autoclave 121°C, 30 min.
5. Allow samples to cool to room temperature.
6. Add 3.3 ml 1 M NaOH to each sample.
7. Cap tubes tightly, and invert to mix the floc produced by the NaOH addition.
8. Centrifuge at 1000g at room temperature for 60 min.
9. Aspirate the supernatant using a clean Pasteur pipette attached to a vacuum line and collection flask. Take care not to disturb the pellet.
10. Add 9.0 ml of 0.1 M HCl to each tube and vortex to dissolve the pellet completely.
11. Add 1 ml reduction mix to each 10 ml sample. Vortex and allow to react for 15±1 min.
12. After 15±1 min add 1 ml molybdenum blue reaction mix to each 10 ml sample and vortex to mix. Allow to react for at least 15 min at room temperature to ensure full color development. Samples and standards are read at 880 nm in 10 cm cells.

Note: Standards are prepared in surface seawater and treated the same as samples. Blank samples are prepared from artificial seawater (Instant Ocean) filtered through 0.2 μm membrane filter. After a MAGIC treatment (2.5% v/v 1 M NaOH addition, centrifuge at 1000g for 1 h), 40 ml aliquots of the supernatant are transferred to glass tubes and treated as regular samples from step 3, above.

PARTICULATE PHOSPHORUS

Rationale

We define 'particles,' operationally, as those materials that are retained by a Whatman micro-fine glass fiber filter, catalog #GF/F 0.7 μm nominal retention (Sheldon, 1972), acknowledging the fact that some particulate material is known to pass through this filter. The particle retention characteristics are also known to vary with filter loading and, hence, may not be constant even during the filtration of a homogeneous water sample.

In presenting our methods, we have focused on total elemental mass and applications to mass fluxes without consideration as to the chemical form of the PP. Consequently, we derive estimates that cannot be assumed to be equivalent to the organically-bound fraction as they may include inorganic PP as well. More specialized methods do exist for the measurements of lipid-P and nucleic acid-P in the isolated particulate matter (Table 13.1), but these will not be discussed.

The procedure presented herein is a modification of one used by the Hawaii Ocean Time-series (HOT) program at the University of Hawaii and relies on the release of organically-bound phosphorus compounds as Pi, by high-temperature combustion at 450°C. The Pi is then extracted with HCl at 60°C and neutralized with NaOH. The liberated Pi is then measured using the Murphy–Riley procedure described above (see Pi determination). This procedure measures all forms of reactive phosphorus released by combustion and acid hydrolysis. Application of this method for PP inventory estimation and for PP fluxes using particle interceptor traps has been presented elsewhere (Karl et al., 1991, 1996).
Particulate phosphorus determination

Equipment and reagents

- Acid-cleaned polyethylene (PE) bottles (12 l)
- Low pressure (4–7 psi nitrogen gas) or vacuum filtration apparatus
- Filter holder assembly for in-line pressure filtration
- Muffle furnace (450°C)
- Drying oven (60°C)
- Combusted (450°C, 4.5 h), HCl (1 M) washed, glass tubes 12 × 75 mm
- Combusted, HCl (1 M) rinsed GF/F filters, 25 mm
- Combusted aluminum foil
- Clean forceps
- Automatic pipettes or repipette for reagent dispensing
- Hydrochloric acid 0.15 N
- Certified reference material, phosphate standard solutions, molybdenum blue reaction mixture and equipment (all as above for Pi determination)

Assay

1. Seawater is collected using appropriate sampling techniques. If necessary, samples are pre-screened through a 202 μm Nitex screen to remove large zooplankton.
2. Samples are filtered through a combusted, acid-rinsed GF/F filter. This can be done by pressure filtration using in-line filter holders and applying 4–7 psi gas pressure (N₂) or by vacuum filtration.
3. Following filtration the filter is transferred into acid-cleaned, combusted glass tubes using clean forceps. Combusted, acid-washed GF/F filters serve as blank samples.
4. The glass tubes are covered with a piece of combusted foil. The foil is secured with label tape and stored frozen (−20°C).
5. Combust samples in muffle furnace (450°C, 4.5 h; remove tape before combusting).
6. After cooling to room temperature, add 10 ml 0.15 N HCl; heat to 60°C for 1 h.
7. Adjust volume to 10 ml, and centrifuge at 1000g for 15 min.
8. Transfer 5 ml of supernatant into acid-washed, combusted glass tube.
9. Add 0.5 ml of the molybdenum blue reaction mixture to each sample; mix and allow to react for 1 h.

Note: Standards are prepared in 0.15 N HCl and treated the same as samples. Samples and standards are read at 880 nm in 1 cm cells. Filter blanks are also included.
Measurements of particulate and dissolved ATP

Rationale: Particulate ATP as a microbial biomass indicator

The phylogenetic diversity of microorganisms in the sea and the generally high percentage of non-living to living C, N and P complicates a straightforward assessment of total microbial biomass despite the fundamental importance of this parameter for many ecological studies. Measurements of PP (see above) can be used to provide an upper bound on biomass-P, but in most open ocean surface waters and in all subeutrophic zone waters of the global ocean non-living components dominate the standing stock of POM. It would, therefore, be desirable to have a reliable biochemical or molecular biomarker for life, one that is: (1) present in all living cells and readily metabolized, hydrolyzed or otherwise decomposed following cell death, (2) present in a fixed, constant percentage relative to total cell mass regardless of environmental or physiological conditions; and (3) easily extracted and purified (if necessary) from seawater and conveniently measured.

Levin et al. (1964) first suggested that ATP, the common energy currency of all living cells, might be a sensitive indicator for the presence of living microorganisms in natural samples. Two years later, Holm-Hansen and Booth (1966) proposed that ATP measurements could be used to estimate total microbial biomass in marine ecosystems. These pioneering efforts evolved into a simple and extremely sensitive assay that has widespread use in marine microbiology. Without exception, all living organisms contain ATP, so the basis for the use of this molecular biomarker is well-founded (Karl and Dobbs, 1998). The measurement of P-ATP is described in detail elsewhere (Karl, 1993).

Rationale: Dissolved ATP as a ‘model’ DOP compound

Significant concentrations of D-ATP have been detected in marine (Azam and Hodson, 1977; Navrocki and Karl, 1989) and freshwater (Riemann, 1979; Maki et al., 1983) environments. It is unknown whether this D-ATP interferes with the conventional measurement of P-ATP in aquatic environments, but since most water samples are generally concentrated onto filters before extraction, the relative contribution from D-ATP should be minimal. The much more interesting questions with regard to the ubiquity of D-ATP in natural aquatic ecosystems are: Why? And by what mechanisms?

Given the fundamental role of ATP in cellular energetics, it is unlikely that D-ATP is derived directly from healthy cells by excretion or exudation. D-ATP production is probably a manifestation of microbial cell death by grazing or autolysis. D-ATP is also a readily bioavailable substrate: marine microorganisms can and do assimilate D-ATP, in part, for P and, in part, for purine salvage and nucleic acid synthesis. Consequently, D-ATP concentration measurements coupled with D-ATP/32P (or 3H/14C radio-labeled substrates) can be used to estimate D-ATP pool turnover and mass flux through marine microbial assemblages (Azam and Hodson, 1977).
D-ATP is probably the only organic-P compound that can be measured at ambient pool concentrations and can be tracked through the microbial food web maze. In this regard, and given its fundamental role in cellular bioenergetics and biosynthesis, ATP might be considered a model compound in studies of the marine P cycle.

In addition to D-ATP, dissolved ADP and AMP (McGrath and Sullivan, 1981), dissolved cyclic-3’, 5’-AMP (c-AMP; Ammerman and Azam, 1981) and dissolved guanosine-5’-triphosphate (Björkman and Karl, 2000) have also been detected in seawater. At the present time, it is not known whether these related intracellular compounds have similar sources and sinks in the marine environment.

Dissolved ATP

Equipment and reagents

- Acid-cleaned high-density polyethylene (HDPE) sampling bottles
- Vacuum filtration manifold
- Membrane filters (0.2 μm, Poretics, Nuclepore)
- Adjustable automatic pipettes (10–100 μl, 100–1000 μl, 1–5 ml)
- Sodium hydroxide (1 M NaOH, Fluka Biochemika #71689)
- Hydrochloric acid (5 M HCl, Fisher #A1445-212)
- Modified firefly lantern extract (FLE) mixture for high-sensitivity bioluminescence assay:
 1. Firefly lantern extract, freeze dried (Sigma Chemical Co, # FLE-50)
 2. Tris 20 mM, pH 7.4 (Sigma Chemical Co, #T4003)
 3. Arsenate buffer 0.1 M, pH 7.4 (Na₂HAsO₄, Mallinckrodt #7384)
 4. Dithiothreitol 0.1 M (DTT; Sigma Chemical Co, #D-9779)
 5. Luciferin 3.3 mM (Sigma Chemical Co, #L-6882)

The FLE is reconstituted in 5 ml DDW per 50 mg vial and allowed to age at room temperature for 6–12 h prior to diluting with equal volumes of solutions 2 and 3 to a final volume 75 ml. The FLE mixture is filtered through a GF/F filter to remove solids. Add 1% v/v DTT and luciferin, respectively, to the FLE mixture.

- ATP photometer or equivalent light detection instrument, preferably equipped with an automatic injection unit and interfaced with a computer for calculations of peak height and the integrated counts of the light emission decay curve.

Assay

1. Seawater samples are filtered through 0.2 μm polycarbonate membrane filters and 450 ml of the filtrate transferred to HDPE bottles and stored frozen (−20°C) until further processed. The volume used is determined by the expected dissolved ATP concentration; smaller sample volumes can successfully be used with waters from eutrophic regions.
2. Thaw samples to room temperature in water bath. Transfer to clean transparent bottles.
3. Add 2.25 ml 1 M NaOH (0.5% v/v) to 450 ml sample. Mix thoroughly.
4. Centrifuge at 1000g for 60 min at room temperature.
5. Aspirate supernatant and discard. (If a centrifuge that can accommodate large volume samples is not available the floc can be settled passively for 3 h. Aspirate the overlying volume until approximately 50 ml remains. Transfer this suspended floc to clean 50 ml polypropylene centrifuge tubes and centrifuge as in step #4.)
6. Dissolve pellet by adding 5 ml HCl until solution just turns from milky to clear (pH 7-8), usually 100-200 µl. Adjust volume with Tris buffer (20 mM, pH 7.4) to 2 ml.
7. Place 100 µl sample in reaction vial and insert in photometer. Add 800 µl of the FLE reaction mixture and monitor the light emission.

Note: Standards are prepared in deep-sea water with low D-ATP content from stock solutions and treated the same as unknown samples. The blank value is deducted and ATP concentrations are determined from the slope of the standard curve using peak height bioluminescence counts.

********** Pi UPTAKE/REGENERATION AND DOP PRODUCTION/UTILIZATION RATES

Rationale

The use of stable and radioisotopic tracers to monitor and quantify the rates of microbial growth, metabolism and biogeochemical cycling of key elements and compounds has revolutionized the field of microbiological oceanography. In general, there are two major categories of isotope-based research: (1) the use of naturally occurring stable or radioactive isotopes in selected inorganic substrate pools or organic matter and (2) the use of exogenously supplied stable or radioactive isotopes. The former application, which includes the detection of the cosmogenic radiotracers 32P and 33P (Lal and Lee, 1988; Lal et al., 1988) are most useful for long-term (day to week) whole ecosystem studies. Two recent applications in the Sargasso Sea and Gulf of Maine have demonstrated the efficacy of using natural cosmogenic 32P/33P radioisotopes in studies of the marine P cycle (Waser et al., 1996; Benitez-Nelson and Buesseler, 1999). The latter application, also including the use of exogenously supplied 32P and 33P-labeled compounds, is best suited for short-term (hours to day) studies of metabolic pathways, nutrient fluxes and organic tissue labeling patterns.

The use of 32P (or 33P) as a tracer for Pi uptake, incorporation and regeneration has been used extensively in oceanography to measure the growth and metabolic activities of algal and bacterial assemblages (Rigler, 1956; Watt and Hayes, 1963; Sorokin and Vyshkovtsev, 1974; Taft et al., 1975;
Harrison et al., 1977; Perry and Eppley, 1981; Sorokin, 1985; Atkinson, 1987; see Table 13.1). Certain P radiotracer field experiments have employed either size fractionation treatments (Harrison et al., 1977), metabolic inhibitors (Krempin et al., 1981) or multiple labeled substrates (Cuhel et al., 1983) to separate algal and heterotrophic bacterial activities. Typically, the radiotracer is added as carrier-free 32P (or 33P) in order to minimize perturbations that may be caused by P uptake enrichment of 32P concentration, or preferably BA^{32}P, is obtained then 32P (33P) uptake rates can be extrapolated to mass fluxes. The key to providing a reliable mass flux is the accurate estimation of the BAP pool. If standard SRP measurements are used, P uptake rates and, hence, mass fluxes could be grossly overestimated or underestimated.

The two radioactive isotopes of 32P, 33P and 32P, have very different characteristics including half-life and radioactive decay properties. While both isotopes produce β particles, the energy of 32P decay is much greater than 33P and the half-life is shorter (32P, $E_{\text{max}} = 1.710$ MeV, half-life = 14.3 days; 33P, $E_{\text{max}} = 0.249$ MeV, half-life = 25.3 days). A consequence of the 32P high energy β emission is a phenomenon known as Cerenkov radiation. This property provides a unique opportunity to detect and quantify the activity of 32P in dissolved and particulate matter with reasonable counting efficiencies (~40%) in the absence of a scintillation fluoro and, therefore, without chemical quench. This non-destructive counting method means that the entire sample can be recovered for subsequent analysis.

In addition to P uptake and rates of P incorporation into PP or specific subcellular pools (e.g. lipids, nucleic acids; see Table 13.1), exogenous radiotracer experiments can also provide information on Pi regeneration rates (Harrison, 1983; Smith et al., 1985) and DOP production rates (Johannes, 1964; Lemasson and Pages, 1981; Orrett and Karl, 1987; Björkman et al., 2000). As for Pi uptake, accurate Pi regeneration or DOP production estimation requires information on the ambient pool of BAP in the habitat under investigation. When combined with independent methods of DOP pool characterization, these radiotracer experiments can also be used to quantify the fluxes of specific DOP compounds or compound classes (e.g. nucleotides). A 'pulse-chase' experimental design (i.e. pre-incubation with 32P or 33P radiotracer followed by the addition of a ten-fold excess of 32P) could be employed to follow both net DOP production, during the labeling phase, and DOC turnover in the post-chase treatments. Finally, the addition of exogenous, 32P (or 33P)-radio-labeled DOP compounds (e.g. glucose-P, ATP, glycerol-P) can provide information on the turnover time of individual pools and potentially (if combined with direct measurements of ambient pool concentrations) on mass fluxes (production and utilization rates) through selected organic-P pools. Our current inability to measure any but a very few DOP compounds (a notable exception is ATP, as discussed above) limits the application of this experimental design.
Pi uptake and DOP production

Equipment and reagents

- Acid-cleaned high density polyethylene (HDPE) sampling bottles
- Polypropylene centrifuge tubes 50 ml (Corning)
- Polycarbonate incubation bottles
- On-deck temperature- and light-controlled incubator, or in situ incubation array
- Vacuum filtration manifold, filtration funnels and bases, vacuum pump
- Membrane filters (0.2 μm Poretics, Nuclepore)
- Glass scintillation vials
- Acid cleaned autoclavable glass centrifuge tubes 50 ml with teflon lined caps (Kimble)
- Plastic pipettes (50 ml) for sample dispensing
- Automatic pipettes or repipettor for reagent dispensing and sampling
- Centrifuge with capacity to hold 50 ml tubes
- Steam or electric autoclave
- Radiolabeled orthophosphate (\(^{32}\)Pi/\(^{33}\)Pi) as a stock solution of approximately 18.5 MBq ml\(^{-1}\) (500 μCi ml\(^{-1}\)) (ICN Radiochemicals)
- Sodium hydroxide 1 M (NaOH, Fluka Biochemica #71689)
- Potassium persulfate 5% w/v (K\(_2\)S\(_2\)O\(_8\), Fisher #P281)
- Hydrochloric acid 0.1 M (Fisher trace metal grade HCl, #A508-212)
- Spectrophotometer Beckman DU 640, or equivalent, and cuvette cells (10 cm)
- Liquid scintillation counter (LSC)
- Arsenate reduction mixture, Pi standards, molybdenum blue reaction mixture and equipment (as above for Pi determination)

Assay

1. Incubate freshly collected seawater samples under defined temperature and light conditions in the presence of the radiolabel. The radioactivity required depends on sample size and ambient BAP concentrations.

2. At predetermined incubation periods, subsamples are removed for total (1 ml whole water) and particulate radioactivity by filtration onto membrane filters. The whole water and filter samples are placed in scintillation vials and the filtrate collected and stored frozen (−20°C) in HDPE bottles.

3. The filters and whole water samples are counted by LSC.

4. The filtrate samples are thawed in a water bath to room temperature.

5. Triplicate 50 ml sample aliquots are placed into new 50 ml polypropylene centrifuge tubes using a 50 ml plastic pipette; 1 ml from each sample is placed directly into a scintillation vial for LSC counting of total \(^{32}\)P (\(^{33}\)P) activity.

6. Add 150 μL (0.3% v/v) 1 M NaOH to each 50 ml aliquot.
7. Cap tubes tightly, and invert to mix the floc produced by the NaOH addition.
8. Centrifuge at 1000g at room temperature for 60 min.
9. Remove 1 ml of supernatant for LSC counting of remaining radioactivity (DO³²P/DO³³P).
10. Transfer 3 × 40 ml of the supernatant to 50 ml acid washed glass centrifuge tubes using a 50 ml plastic pipette.
11. Aspirate the remaining supernatant in the polypropylene tubes taking care not to disturb the small pellet (go to step # 20).
12. To each glass tube add 6.4 ml potassium persulfate solution. Cap tightly.
13. Autoclave 121°C, 30 min.
14. Allow samples to cool to room temperature.
15. Add 3.3 ml 1 M NaOH to each sample.
16. Cap tubes tightly, and invert to mix the floc produced by the NaOH addition.
17. Centrifuge at 1000g at room temperature for 60 min.
18. Aspirate the supernatant using a clean Pasteur pipette attached to a vacuum line and a collection flask.
19. Add 9.0 ml of 0.1 M HCl is added to each tube and shake to dissolve the pellet.
20. Add 1 ml reduction mix to each 10 ml sample. Measure Pi, as above.

Note: From time course incubations the uptake rate of ³²Pi, and the turnover time of the Pi equivalent pool can be calculated. If the Pi (SRP or BAP pool) is known the mass flux of P can be calculated from the turnover time and the known concentration of the relevant P-pool. The production of DOP is estimated from the increase in ³³P activity in the supernatant over time and by assuming that the DOP formed has the same specific activity as the initial Pi. The production rate of DOP can be calculated and the average turnover time for the DOP pool assessed with the knowledge of the DOP pool size derived from the DOP concentrations in the samples.

***** INTRACELLULAR ATP POOL TURNOVER AND BIOLOGICALLY AVAILABLE P

Principle: Intracellular ATP pool turnover

The central role of ATP in the stoichiometric coupling of energy-yielding and energy-requiring metabolic reactions has been known since the pioneering research of Lipmann (1941). The steady-state intracellular concentration of ATP in viable microorganisms (prokaryotes and eukaryotes) appears to be well-regulated at a value of 2 to 6 nmol ATP mg⁻¹ dry weight (~1 to 3 mM) regardless of growth rate, culture condition, or mode of nutrition (Karl, 1980). Previous studies of ATP pools in microorganisms
and in environmental samples have emphasized the futility of extrapolating these static measurements to estimates of metabolic energy flux. Consequently, it is the turnover rate of the ATP pool, rather than the steady-state concentration of that pool, which varies in proportion to cellular metabolic energy requirements. It follows then, that direct measurements of ATP pool turnover rates, when coupled with independent estimates of ATP pool size, should provide useful information on biological energy flux in cells, populations, or natural microbial assemblages.

Cellular ATP pool turnover results from the hydrolysis of one or both of the anhydride-bound PO₄ groups (the β-P and γ-P or 'high-energy' phosphate bonds) via orthophosphate or pyrophosphate cleavage, followed by subsequent regeneration of ATP by either substrate-level, oxidative, or photophosphorylation processes. Because ATP pool turnover defines a cycle, this essential set of metabolic processes results neither in net removal of adenine nucleotide molecules from the intracellular pool nor requires coupled biosynthesis thereof. This is important in the analytical procedures employed to distinguish between the turnover cycles of ATP and total adenine nucleotide (TAN) pools (Karl, 1993).

In theory, ATP pool turnover rates could be measured under steady-state metabolic conditions (i.e. d[ATP]/dt = 0) by estimating either the rate of ATP formation or rate of ATP utilization, if either process could be temporarily suspended without affecting the other. Such ATP pool transitions have been observed in microorganisms following the rapid removal of oxygen (for aerobic heterotrophs) or light (for phototrophs), but it is uncertain whether the results derived from these harsh experimental perturbations yield reliable estimates of ATP pool dynamics. Karl and Bossard (1985a) devised a novel method for ATP pool turnover in cell cultures or natural populations of microorganisms. The procedure relies upon the use of ³²Pi (or ³¹P) as a tracer for P-flux through the acid anhydride-bound P (β-P and γ-P) groups of cellular ATP. The uptake of ³²Pi also results in the labeling of the α-P group of ATP, if the population in question is actively growing (i.e. if there is a net removal of adenine nucleotides for biosynthesis). Consequently, in order to uniquely assess the labeling of ATP derived from energy flux, one must be able to separate β-P and γ-P labeling from α-P (Karl and Bossard, 1985a). On the other hand, α-P labeling defines TAN pool turnover and therefore, ³²Pi labeling can be used to estimate both ATP and TAN pool turnover rates.

The uptake, or salvage, of exogenously added nucleic acid precursors (e.g. adenine, thymidine, uridine) in preference to de novo synthesis is a well-documented characteristic of aquatic microbial communities (Karl, 1979; Fuhrman and Azam, 1980). This phenomenon comprises the theoretical basis for the use of [³¹H]adenine, [³¹H]thymidine, and [³¹H]uridine in ecological studies of nucleic acid synthesis. An important aspect of the incorporation of nucleic acid precursors is the observation that the total flux of precursor into the nucleotide triphosphate pools (i.e. ATP, TTP, UTP, etc.), which is the result of the combined effects of salvage and de novo synthesis, is in equilibrium with the removal of the triphosphate precursors required for cellular biosynthesis. Furthermore, it is well
documented that the TAN pool (i.e. steady-state intracellular concentration of \([ATP + ADP + AMP]\)) in microorganisms does not vary with changes in the specific growth rate (Karl, 1980; Chapman and Atkinson, 1977). Because cellular biosynthesis is directly related to growth rate, a positive correlation is expected to exist between cellular adenine nucleotide flux and growth. It follows then that the turnover rate of the TAN pool (and most likely, of all ribonucleotide and deoxyribonucleotide pools in general) must vary in direct proportion to the rates of nucleic acid synthesis and hence, net growth.

The TAN pool turnover time is defined as the average residence time of a molecule in the intracellular pool before it is removed for macromolecular biosynthesis (i.e. the steady-state pool concentration divided by the steady-state rate of synthesis or removal). If a radioactive precursor such as \([{}^{3}H]\)adenine is added to a growing culture or natural population of microorganisms, the TAN pool turnover time can be calculated by monitoring the change in the specific activity (SA) of the ATP pool with incubation time. TAN pool turnover rate can also be measured by monitoring the labeling kinetics of the \(\alpha\)-P position of ATP following the addition of \(\gamma^{3}P\) (or \(\gamma^{32}P\)) to a sample (Karl and Bossard, 1985b). Exactly one turnover cycle has been completed when the ATP pool has achieved an SA that is equal to 50% of the value at isotopic equilibrium. Chapman and Atkinson (1977) have estimated TAN pool turnover rates as a function of growth rate for \textit{Escherichia coli} and \textit{Salmonella typhimurium}. They conclude that the TAN pool ‘turns over’ (i.e. is completely utilized for biosynthesis and is replenished through salvaging and \textit{de novo} synthesis) 30 to 50 times per generation regardless of generation time. This prediction has been tested using a diverse variety of marine microorganisms (Karl et al., 1987). The results indicate that the TAN pool turnover time is positively correlated with generation time and averages 2.2% of the generation time (i.e. TAN pool turns over 45 times per generation).

Consequently, a single time-course incubation with \(\gamma^{3}P\) (\(\gamma^{32}P\)), followed by isolation and selective hydrolysis of the ATP pool, can be used to assess the independent labeling kinetics of the \(\alpha\)-P, \(\beta\)-P and \(\gamma\)-P moieties of ATP. The turnover rate of the \(\alpha\)-P position provides quantitative information on TAN pool turnover and, hence, growth rate, and the turnover rate of the \(\beta\)-P and \(\gamma\)-P positions provides quantitative information on ATP pool turnover and, hence, energy flux. The labeling of \(\gamma\)-P can also be used to estimate the BAP pool (see following section). Specific ecological applications of the ATP pool and TAN pool turnover for microbial growth rate and energy flux determinations have been presented elsewhere (Karl and Bossard, 1985a, b; Bossard and Karl, 1986; Laws et al., 1986; Karl et al., 1987; Karl, 1993).

Principle: Biologically available P

Regardless of the rigor and precision with which P-containing pools are measured, the ecological significance of these analytical determinations will be incomplete until reliable estimates of the BAP pool are routinely
available. In addition to Pi, which is generally the preferred substrate for microorganisms, the P-containing in a variety of polymeric inorganic compounds, in monomorphic and polymeric organic compounds and in selected P-containing minerals is available to some or all microorganisms; indeed some microorganisms may prefer ester-linked P sources to free orthophosphate (Tarapchak and Moll, 1990; Côtner and Weizel, 1992). However, the bioavailability of most organic P pools depends critically on ambient Pi pool concentrations and on the expression of specific transport, salvaging, and hydrolytic enzymes. Because many of these enzymes are induced by low Pi, bioavailability may be a variable, time- and habitat condition-dependent parameter, rather than an easily predicted or measured metric. Assessment of the BAP may also depend on the timescale of consideration: substrates that appear to be recalcitrant on short timescales (e.g. < 1 day) may readily fuel longer-term (annual to decadal) microbial metabolism.

BAP can be estimated using the γ-P labeling technique described later for ATP pool turnover. Because the intracellular ATP pool turns over rapidly, the P-specific radioactivity in the γ-P position of the P-ATP pool will reach equilibrium not only with the extracellular Pi pool but with the potentially larger pool of extracellular Pi that is available to the microbial assemblage at that time, the so-called BAP pool. The only difference between the determination of ATP γ-P labeling and estimation of BAP is that the latter determination demands a direct measurement of the total P-ATP pool, as well as the amount of 32P (or 33P) contained in the isolated γ-P fraction thereof. This provides the data necessary to calculate the P-specific radioactivity of the γ-P in the intracellular ATP pool (i.e. 32P or 33P mol^-1) which, at isotopic equilibrium (i.e. five turnover cycles) is identical to the specific radioactivity of the extracellular BAP pool.

ATP pool turnover and BAP

Equipment and reagents

- Acid-cleaved polycarbonate incubation bottles (0.1 to 4 l, depending on experimental design)
- On-deck temperature- and light-controlled incubator, or in situ incubation array
- Filtration gear, heating block and other ATP extraction and detection equipment and supplies
- Vacuum evaporator (Savant Speed-Vac or equivalent)
- Microcentrifuge and gyratory shaker table
- Thin layer chromatography (TLC) glass tanks with covers
- TLC plates (20 × 20 cm), polyethylenimine (PEI) impregnated cellulose (Polygram CEL 300 PEI, Machery-Nagel, Fisher #NC-9254648)
- High-intensity ultraviolet (UV) lamp
- Radiolabeled orthophosphate (32PO₄ or 33PO₄) as a stock solution of approximately 18.5 MBq mL⁻¹ (500 μCi mL⁻¹) (ICN Radiochemicals)
- ATP (0.5 mM in Tris buffer 20 mM, pH 7.4, Sigma #A-6144)
- Formic acid (0.2 M, Baker #I-0128)
- Potassium phosphate solution (0.85 M, pH 3.4, Fisher #P288)
- Magnesium chloride (0.35 M, Fisher #M87)
- Activated charcoal slurry: 25 mg charcoal per ml of 0.1 M H₃PO₄ (activated charcoal, Sigma #C-4386)
- ATPase, porcine cerebral cortex (EC 3.6.1.3; Sigma Chemical Co, #A7510) prepared in distilled deionized water (DDW) to a concentration of 1 unit ml⁻¹ and stored frozen at -20°C until needed. Alternatively, apyrase (Sigma Chemical Co, #A6132) can be used (10 units ml⁻¹ in DDW) and stored frozen
- Liquid scintillation counter (LSC)

Assay

1. Incubate freshly collected seawater samples under defined temperature and light conditions in the presence of exogenous ³²P⁻ (or ³⁵P⁻); typically 20–40 MBq l⁻¹.
2. At predetermined incubation periods, subsamples are removed and particulate ATP pools are extracted in boiling Tris buffer and stored frozen.
3. Thaw samples; centrifuge at 1000g for 15 min to remove filter debris.
4. Transfer 3.5 to 4.0 ml of the supernatant to clean scintillation vials.
5. Evaporate to dryness in vacuo (Speed Vac). The samples are then reconstituted in 100–200 µl DDW.
6. In clean disposable glass tube mix 10 µl of concentrated ATP extract with 10 µl of non-radioactive ATP (0.5 mM) solution. Spot 10 µl of this mixture on predetermined location approximately 1 cm from bottom edge on a PEI plate. About 8–10 lanes can be prepared per plate.
7. Air-dry plate and then wash twice (5 min each) by immersion in DDW (1 l). Allow plate to dry (this step can be accelerated by using a hairdryer).
8. Develop plate in formic acid (0.2 M) to top of plate in a closed TLC chamber.
9. Remove and immediately immerse in DDW (1 l) for 5 min. Allow to dry.
10. Develop plate in the same direction in potassium phosphate solution (0.85 M, pH 3.4) to approximately 2 cm from top edge of plate in closed TLC chamber.
11. Wash plate (2 × 5 min, 1 l DDW) and air dry.
12. The ATP spots are visualized under UV-light, circled with a pencil and cut out with a pair of scissors. Recovery is typically >90%.
13. The excised PEI cuttings are placed into scintillation vials containing 1 ml of 0.35 M MgCl₂ and placed on shaker table for 1 h to elute ATP from the PEI matrix.

262
14. A 10 µl aliquot from the elute is diluted into 1 ml Tris buffer (20 mM, pH 7.4) and assayed for total ATP by the firefly bioluminescence reaction. This is to determine the recovery of the ATP initially applied to the PEI plate.

15. To perform the ATPase hydrolysis reaction place 750 µl of the TLC-purified ATP solution (in 0.35 mM MgCl₂) into a 12 x 75 mm glass culture tube containing; add 250 µl DDW, 10 µl KCl (1 M), 20 µl NaCl (5 M) and 25 µl AMP (3 mM).

16. Add 50 µl of the ATPase solution (stock at 1 unit ml⁻¹). Mix thoroughly.

17. Immediately remove 10 µl of mixture and dilute into 1 ml Tris (20 mM, pH 7.4) to quench the reaction and assay for ‘time zero’ ATP (as above for ATP determination).

18. The ATP procedure is repeated (10 µl sample, as above) after 10 to 15 min with one or two representative samples to establish the initial rate of hydrolysis of ATP to ADP. Once the rate is known the time for complete hydrolysis can be calculated (normally 20-40 min). The rate of hydrolysis is expected to be similar, however, complete ATP hydrolysis should be confirmed for each sample before proceeding with the separation and purification of products.

19. Remove 250 µl of the sample and place in scintillation vial for LSC counting of the ‘total radioactivity’ (i.e. α-, β- and γ-³P of ATP).

20. Place a second 500 µl aliquot into a 1.5 ml microcentrifuge tube containing 500 µl of the charcoal slurry. Mix thoroughly (vortex).

21. Centrifuge at 15 000g for 10 min.

22. Remove 750 µl of supernatant is placed into a scintillation vial for LSC counting of the γ-³P activity.

23. Calculate the specific radioactivity of the ATP pool over time.

24. The specific γ-³P activity of the intracellular ATP pool when it has reached its isotopic equilibrium (i.e. maximum) corresponds to the specific activity of the precursor pool (i.e. the bioavailable P (BAP) pool) and the size of the BAP pool can be determined.

Note: If apyrase is used instead of ATPase in step #15; place 750 µl of the TLC-purified ATP solution (in 0.35 mM MgCl₂) into a 12 x 75 mm glass culture tube containing; 250 µl DDW, 20 µl CaCl₂ (1 M). Add 25 µl apyrase (10 units ml⁻¹) and mix thoroughly. Proceed from step 21. The apyrase cleaves both the β- and γ-³P of ATP and this has to be taken into account when calculating the specific activity of the intracellular ATP pool and in estimating the size of the BAP pool.

Calculations: From the data obtained above, the turnover time of the total ATP (β- and γ-³P labeling) and or total adenine (TAN) pool (α-³P labeling) can be calculated and from that energy flux and community growth rate respectively. The change in the ATP or TAN pool-specific activity (SA; nCi pmol⁻¹), predicted by radiotracer theory, follows an exponential function of the incubation time. The decimal equivalent of SA at any time (Sa) can be described by the equation: SA, = 1 – (2⁻ⁿ),
where N is the number of turnover cycles observed during the incubation period. ATP or TAN pool turnover time (T) can be calculated from the expression: $T = t/N$. At incubation times ≥ 5 the pools are in isotopic equilibrium and would, in theory, not change until the exogenous precursor source is exhausted, and pool delabeling begins. Once T has been determined it can be used to extrapolate energy flux (EF) and specific growth rate: EF (kcal $1^* h^{-1} = -22 \times [ATP]/T_{sp}$), where $[ATP]$ is equal to the total particulate ATP pool (M) and T_{sp} is ATP pool turnover time (h). To estimate growth rate, the TAN pool turnover time is assumed to be equivalent to 2% of the generation time (i.e. the doubling time (T_d) is on average $45 \times T_{sp}$).

References

List of suppliers

Fisher Scientific
Phone 1-800-766-7000
Fax 1-800-926-1166
www.fishersci.com

- Hydrochloric acid #A114S-212
- Trace metal grade HCl #A508-212
- Sulfuric acid #A300-212
- Formic acid (Baker #1-0128)
- Ammonium molybdate #A674
- Ascorbic acid #A61
- Potassium antimonyl tartrate (Mallinckrodt #2388)
- Magnesium chloride #M87
- Magnesium sulfate #M63
- PEI TLC plates #NC9254648
- Potassium persulfate #281
- Potassium phosphate #P288
- Centrifuge tubes 50 ml (Corning)
- HDPE bottles (Nalgene)
- Polycarbonate bottles (Nalgene)
- Whatman GF/F filters
- Polycarbonate filters (Poretics)
- Scintillation vials
- Vacutainers (Becton Dickinson)

Fluka Chemika Biochemika
Fluka Chemical Corp.
980 South 2nd Street
Ronkonkoma, NY 11779-7238, USA
Phone 1-800-358-5287
Fax 1-800-441-8841

- Sodium metabisulfate #71930
- Sodium thiosulfate #72049
- Sodium hydroxide #71689

ICN Radiochemicals
ICN Biomedical Research Products
3300 Hyland Avenue
Costa Mesa, CA 92626, USA
Phone 1-800-554-0530
Fax 1-800-334-6999
www.icnbimed.com

- 32PO, #64014-L

Kimble-Kontes
537 Crystal Avenue
Vineland, NJ 08360, USA
Phone 1-888-546-2531
www.kimble.com

- 50 ml tubes #45212
Sigma Chemical Company
P.O. Box 14508
St Louis, MO 63178-9916, USA
Phone 1-800-325-3010
www.sigma-aldrich.com

Activated charcoal #C4386
ATP #A6144
ATPase #A7510
Apyrase #A6132
Firefly lantern extract; FLE-50
Dithiothreitol (DTT) #D9779
Luciferin #L6882
Tris buffer, pH 7.4 #T4003

Wako Chemicals
1500 Bellwood Road
Richmond, VA 23237, USA
Phone 1-800-992-WAKO
CSK material #27874099